CENTRAL UNIVERSITY OF GUJARAT

SCHEME OF EXAMINATION
AND
COURSES OF STUDY

Master of Science (M. Sc.)
Chemical Sciences
<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Course</th>
<th>Hours /week</th>
<th>Total hours</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>CHE401</td>
<td>Inorganic Chemistry-I</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE402</td>
<td>Quantum Mechanics and Chemical Dynamics-I</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE403</td>
<td>Basics of Organic Chemistry-I</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE404</td>
<td>Basics in Chemical Analysis-I</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE441</td>
<td>Laboratory Techniques in Physical Chemistry – I</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE442</td>
<td>Laboratory Techniques in Organic Chemistry –I</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>II</td>
<td>CHE451</td>
<td>Group Theory and Advanced Inorganic Chemistry-II</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE452</td>
<td>Thermodynamics and Electrochemistry-II</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE453</td>
<td>Organic Reaction Mechanisms-II</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE454</td>
<td>Spectroscopic Methods-II</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE491</td>
<td>Laboratory Techniques in Inorganic Chemistry –II</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE492</td>
<td>Laboratory Techniques in Organic Chemistry –II</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>III</td>
<td>CHE501</td>
<td>Advanced Inorganic Chemistry-III</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE502</td>
<td>Applied Physical Chemistry-III</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE503</td>
<td>Photochemistry and Pericyclic Reactions-III</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE504</td>
<td>Separation Techniques-III</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE541</td>
<td>Laboratory Techniques in Physical Chemistry –III</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE542</td>
<td>Laboratory Techniques in Inorganic Chemistry –III</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>IV</td>
<td>CHE551</td>
<td>Advanced Inorganic and Nanochemistry /Inorganic Spectral Techniques Elective-IV</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Total Credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE552</td>
<td>Polymer Chemistry/ Molecular Biophysical Chemistry, Elective-IV</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE553</td>
<td>Advanced Organic Chemistry/ Organic Synthesis, Elective-IV</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE554</td>
<td>Advanced Analytical Methods/ Medicinal Chemistry, Elective-IV</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE591</td>
<td>Project</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td></td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject Code</td>
<td>M. Sc. Chemical Sciences First Semester</td>
<td>No. of Credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE401</td>
<td>Inorganic Chemistry-I</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit-I:

Molecular Symmetry
Symmetry elements and operations, symmetry groups and molecular point groups.

Molecular Geometry
VSEPR, ligand close packing model, Walsh diagrams, $d\pi-p\pi$ bonds, Bent's rule.

Coordination Chemistry
Bonding theories, stereochemistry and structure of coordination compounds, Jahn–Teller theorem.

Unit-II:

Electronic Spectra of Transition Metal Complexes
Spectroscopic ground states; Orgel energy level and Tanabe-Sugano diagrams; calculation of calculation of ligand-field parameters, charge transfer spectra; symmetry based concepts of Orgel energy level diagrams, Spectroscopic method for assignment of absolute configuration of optically active metal chelates.

Magnetic Properties of Transition Metal Complexes
Microstates, multiplet, multiplet width, hole formalism, zero-field splitting, spin-orbit coupling, quenching of orbital contribution, high spin/low spin equilibrium, anomalous magnetic moments, magnetic exchange coupling and spin cross over.

Unit-III:

Inorganic Polymers
Classification, types of inorganic polymerization, comparison with organic polymers, boron-oxygen, boron-nitrogen, phosphorus-nitrogen, sulfur-nitrogen, sulfur-nitrogen-fluorine compounds, silicones.
<table>
<thead>
<tr>
<th>Structure of solids</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Structure of compounds of AX, AX₂, AmX₂, ABX₃, spinels and inverse spinel structures.</td>
</tr>
<tr>
<td>Nuclear Chemistry</td>
<td>Nuclear reactions, fission and fusion, radio-analytical techniques and activation analysis.</td>
</tr>
</tbody>
</table>

SUGGESTED BOOKS:

<table>
<thead>
<tr>
<th>CHE402</th>
<th>Quantum Mechanics and Chemical Dynamics-I</th>
<th>3</th>
</tr>
</thead>
</table>

Unit-I:

Quantum Mechanics

Unit-II:

Chemical Dynamics

Review of theories of reaction rate-collision theory and transition state theory, Significance of energy of activation, temperature
Coefficient and its evaluation. Thermodynamical formulation of reaction rates, reaction between ions in solutions – Concept of steady state kinetics, chain reactions – photochemical and thermal reactions and examples

Unit-III:

Surface chemistry
Types of adsorption isotherms, estimation of surface area, surface tension and surface energy, pressure difference across curved surface (Laplace equation), vapour pressure of droplets (Kelvin equation), surface film on liquids (electro-kinetic phenomena), catalytic activity of surfaces.

Kinetics of homogeneous catalysis
Concepts of catalysis, acid-base, enzyme catalysed, and autocatalyzed reactions and examples

SUGGESTED BOOKS:

Basic concepts of organic chemistry

Review of basic concepts in organic chemistry: bonding, hybridization, inductive effect, resonance effect, hyperconjugation, tautomerism and steric effect.

The concept of aromaticity: delocalized chemical bonding, conjugation, cross conjugation, aromaticity, Huckel’s rule, examples of neutral and charged aromatic systems (including annulenes, azulene, tropone and tropolone, benzenoids, mesoionic compounds). Anti and homo-aromatic systems. Alternant and non-alternant hydrocarbons, energy levels in odd and even-alternant hydrocarbons, benzyl cation, benzyl free-radical and benzyl carbanion.

Unit-II:

Reaction Mechanisms

Generation, structure, stability, and reactivity of reaction intermediates: carbocations, carbanions, carbon free radicals, carbenes, and nitrenes.

Acids and bases: hard and soft acids and bases, effect of structure on the strengths of acids and bases.

Heterocyclic compounds

Nomenclature of heterocyclic compounds. Structure, reactivity, synthesis and reactions of pyrazole, imidazole, oxazole, isoxazole, thiazole, isothiazole, pyrimidine, purine and indole.

Unit-III:

Stereochemistry

Projection formula and interconversion of projection formulas.

Elements of symmetry, concepts of chirality and molecular
asymmetry, chirality in compounds without stereogenic center.
Homotopic, enantiotopic and diastereotopic atoms, groups and faces. Conformational analysis of 5, and 6 membered cycloalkanes Nomenclature and conformations of fused rings and bridged ring systems. ORD, CD, and cotton effect

SUGGESTED BOOKS:

<table>
<thead>
<tr>
<th>CHE404</th>
<th>Basics in Chemical Analysis-I</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-I:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data handling and statistical methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy and precision, error and types of error, significant figures, rounding off, standard deviation, confidence limits, tests of significance, rejection of results, least squares, correlation coefficient.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid – Base Titrations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic principles, titration curves for mono functional acids and</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
bases, pH calculations, titration curve for diprotic system, theory of indicators.

Redox Titrations

Equilibrium constants for redox reactions- electrode potentials in equilibrium systems; calculation of equilibrium constants; redox titration curves- formal redox potentials; derivation of titration curves; redox indicators; structural aspect of redox indicators; specific and nonspecific indicators; choice of indicator. Sample preparation- pre-reduction and pre-oxidation.

Unit-II:

Complexometric titrations

Organic complexing agents; amino carboxylic acid titration; EDTA; acidic properties of EDTA; EDTA complexes with metal ions; equilibrium calculations involving EDTA in solution; condition of formation constants; EDTA titration curves; effect of other complexing agents on EDTA; indicators for EDTA titrations; theory of common indicators; titration methods using EDTA- direct titration, back titration and displacement titration; indirect determinations; titration of mixtures; selectivity, masking and damasking agents; applications of EDTA titrations- hardness of water.

Precipitation titrations

Solubility product. Theoretical principles: titration curves, End point detection: Volhard and Fajans titration.

Unit III

Karl-Fischer titrations

Titration method and application

Gravimetric analysis

Introduction; properties of precipitates and precipitating reagents; completeness of precipitates; super saturation and precipitate formation; particle size and filterability of precipitates; colloidal
precipitates; crystalline precipitates; purity of the precipitate; co-
precipitation, post precipitation; conditions for precipitation;
fractional precipitation; precipitation from homogenous solution;
washing of precipitates; drying and ignition of precipitates;
calculation of results from gravimetric data; applications.

SUGGESTED BOOKS:

1. Vogel’s Text Book of Quantitative Chemical Analysis; J.
Mendham, J.R. C Denney, J.D. Barnes M. Thomas,
B. Sivasankar, B . 6th Edn.; 2009
2. Analytical Chemistry; G. D. Christian, 5th Edn, John Wiley and
Sons, NY.
3. Fundamentals of analytical chemistry 9th Edn.; Douglas A.
Skoog, Donald M. West, F. James Holler, Stanley R. Crouch,
publisher Mary Finch.

CHE441 Laboratory Techniques in Physical Chemistry – I 3

I. Adsorption

1. Verification of Freundlich and Langmuir adsorption isotherm:
charcoal-acetic acid or charcoal-oxalic acid system.
2. Determination of the concentration of the given acid using the
isotherms.

II. Phase diagrams

1. Construction of phase diagrams of simple eutectics.
2. Construction of phase diagram of compounds with congruent
melting point: diphenyl amine-benzophenone system.
3. Effect of (KCl/succinic acid) on miscibility temperature.
4. Construction of phase diagrams of three component systems with
one pair of partially miscible liquids.

III Viscosity

1. Determination of viscosity of pure liquids using Survismeter.
2. Determination of the composition of binary liquid mixtures using
viscosity data.
3. Determination of the molecular weight of a polymer.

IV. Surface tension
1. Determination of the surface tension of a liquid by Survismeter.
2. Determination of Parachor values.
3. Determination of the composition of two liquids by surface tension measurements using Survismeter.
4. Determination of interfacial tension of two immiscible liquids with Survismeter.

V. Chemical Kinetics
1. Kinetics of Ester Hydrolysis (acid catalyzed)- Determination of the rate constant.
2. Kinetics of Ester Hydrolysis (base catalyzed)- Determination of order of the reaction
3. Kinetics of reaction between K₂S₂O₈ and KI. Influence of ionic strength on the rate constant of the reaction between K₂S₂O₈ and KI

SUGGESTED BOOKS:
1. Practical Physical Chemistry A. Finlay and J. A. Kitchener, Longman.
2. Experimental Physical Chemistry, F. Daniels and J. H. Mathews, Longman.
3. Practical Physical Chemistry A. M. James, Churchil. 1967

CHE442 Laboratory Techniques in Organic Chemistry – I 3

1. Organic synthetic techniques (purification)
 a. Simple distillation: Ethanol-water mixture using water condenser, nitrobenzene and aniline using air condenser.
 b. Steam distillation: Naphthalene from its suspension in water or Clove oil from cloves or separation of o-and p- nitrophenols.
 c. Crystallisation: Concept of induction of crystallization
i. Crystallisation of phthalic acid from hot water using fluted filter paper and stemless funnel.
ii. Acetanilide from boiling water or naphthalene from ethanol (any one).
iii. Decolorisation and crystallization of brown sugar (sucrose) with animal charcoal using gravity filtration.
d. Sublimation: camphor and succinic acid

2. Organic Synthesis
 b. Oxidation: i) Benzoic acid from toluene ii) Cyclohexanone from cyclohexanol iii) Borneol to camphor using jones reagent (any one)
 c. Reduction: p-nitrophenyl methylcarbinol from p-nitro acetophenone by NaBH₄ and purification of the product through distillation under reduced pressure.
 d. Bromination of an alcohol using CBr₄/ triphenylphosphine.
 e. Grignard reaction: Triphenylmethanol from benzoic acid ester or benzophenone.
 f. Aldol condensation: Dibenzal acetone from Benzaldehyde
 g. Acetoacetic ester condensation: Preparation of ethyl-n-butyl acetoacetate.
 h. Cannizzaro reaction using 4-chlorobenzaldehyde as substrate.
 i. Friedel Crafts reaction: using toluene and succinic anhydride.
 j. Solventfree preparation of coumarin by the Knoevenagel condensation under MW irradiation.

SUGGESTED BOOKS:
M. Sc. Chemical Sciences
Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE451</td>
<td>Group Theory and Advance Inorganic Chemistry-II</td>
<td>3</td>
</tr>
</tbody>
</table>

Unit-I: Group Theory
- Classification of Groups; Matrix representation of symmetry elements and point groups, matrices of C_{2v}, C_{3v} point groups, transformation matrices; structure of character tables, Reducible representations, determination of symmetry species for translations and rotations.
- **Applications of Group Theory**
 - Vibrational Spectroscopy, Crystal Field Theory, MOT and formation of hybrid orbitals in different covalent molecules.

Unit-II: Chemistry of inorganic rings, cages and metal clusters
- Higher boranes, carboranes, metalloboranes and metallocarboranes, compounds with metal-metal multiple bonds, metal carbonyls, and halide clusters.
- **Inner transition elements**
 - Spectral and magnetic properties, redox chemistry, analytical applications.

Unit III: Synthesis, Structure and Bonding in Organometallic Compounds
- Introduction, classification, nomenclature, valence electron count, Ligands in organometallic chemistry; carbonyls, nitrosyls, hydride and dihydrogen, phosphine, ethylene and related ligands, cyclopentadiene and related ligands, alkyl, aryl, carbenes, carbynes, carbidos.

SUGGESTED BOOKS:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

CHE452 Thermodynamics and Electrochemistry-II

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-I:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermodynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit-II:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derivation of phase rule from the concept of chemical potential. Application of Phase Rule to three components system: Principle of triangular diagram: Plots for a mixture of three liquids consisting of one, two and three pairs of partially miscible liquids; colligative properties.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unit-III:
Electrochemistry

Conductance, electrolytic, specific, equivalent and molar conductance. Ionic mobility; determination and calculation, Transport number and determination, Kohlrausch’s law and application, molar ionic conductance and ionic mobility, applications of conductance measurements.

SUGGESTED BOOKS:
nucleophile. Goldberg reaction, Bucherer reaction, Schiemann reaction, Von Richter reaction, Sommelet-Hauser and Smiles rearrangements.

Addition Reactions

Addition to carbon-carbon multiple bonds: mechanistic and stereochemical aspects of addition reactions involving electrophiles, nucleophiles and free radicals. Regio, stereo and chemoselectivities. Orientation and reactivity. Mechanism of metal hydride reduction (NaH, LiH, LiAlH₄, NaBH₄) of saturated and unsaturated carbonyl compounds, acids, esters and nitriles. Addition of Grignard reagents and organolithium reagents to carbonyl compounds and unsaturated carbonyl compounds.

Unit-III:

Elimination Reactions

The E₂, E¹ and E¹cB mechanisms and their spectrum. E²C and E²H mechanisms. Orientation of the double bond.

Rearrangements

SUGGESTED BOOK:

Unit-I:

Ultraviolet and Visible Spectroscopy
Classification of electronic transitions, Terminology, substituent and solvent effects, UV spectral study of alkenes, polyenes, enones and aromatic compounds. Empirical rules for calculating λ_{max}.

IR Spectroscopy
Sampling techniques, Group frequencies, factors affecting group frequencies, bond order, mass effect, conjugation, inductive, resonance, steric effects, intramolecular interactions. Application of IR in the study of H-bonding and tautomerism. Complementarity of IR and Raman. Problems using UV and IR.

Unit-II:

Nuclear Magnetic Resonance Spectroscopy
Introduction, Magnetic properties of nuclei—Resonance condition, Nuclear spin, population of nuclear spin levels and NMR isotopes, relaxation methods, Instrumentation handling; classical approach and FT-NMR. Chemical shift, factors influencing chemical shifts, Pascals triangle-low and high resolution, reference compounds Karplus Curve, diamagnetic and paramagnetic effects and magnetic anisotropy. Equivalence of protons-chemical and magnetic equivalence; Spin systems: first order and second order coupling of AB systems, simplification of complex spectra.
CIDNP, Nuclear Over Hauser effect (NOE), Factors influencing coupling constants and Relative intensities.

13C NMR Spectroscopy
Types of CMR spectra-undecoupled, proton decoupled, Off-resonance decoupled (SFORD); Selectively decoupled and gated decoupled spectra. 13C chemical shifts of aliphatic and aromatic compounds; Factors affecting the chemical shifts. Applications of 13C NMR spectroscopy. NMR problems
Unit-III:

Mass Spectrometry

Basic principles- instrumentation; Ion production: Soft ionization methods: Low energy electron ejection; Chemical ionization; Fast-atom bombardment (FAB), Plasma desorption (PD) and Matrix Assisted Laser Desorption/ionization (MALDI); Electrospray ionization (ESI); Mass spectrum: Unit mass molecular ion and isotope peaks; High resolution molecular ion; recognition of the molecular ion peak; Use of molecular formula; Fragmentation of pattern for common organic compounds;

Composite problems; Use of HRMS to determine exact molecular weight of compounds;

Application of UV, IR, NMR and mass methods in the structural elucidation of organic compounds

SUGGESTED BOOKS:

<table>
<thead>
<tr>
<th>CHE491</th>
<th>Laboratory Techniques in Inorganic Chemistry –I</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Qualitative and Quantitative Analysis:</td>
</tr>
</tbody>
</table>

1. Qualitative analysis of mixture of salts (soluble and insoluble) containing six radicals including one less common metal ions-Tl, Mo, W, Se, Ti, Zr, Th, Ce, V, and U.
2. Separation and determination of two metal ions Cu-Ni, Ni-Zn, Cu-Fe involving volumetric and gravimetric methods.
3. Preparation, purification and structural studies (magnetic, electronic and IR) of inorganic complex compounds (any 5 only):
a. trans-potassium diaquabis(oxalato)chromate(III) trans-K[Cr(ox)₂(H₂O)₂].

b. vanadyl bis(acetylacetonate) [VO(acac)₂].

c. sodiumdiamminetetrathiocyanatochromate(III), Na[Cr(NH₃)₂(SCN)₄].

d. bis(acetate)chromate(II), [Cr(OAc)₂].2H₂O.

e. cis-potassium diaquabis(oxalato)chromate(III) cis-K[Cr(ox)₂(H₂O)₂].

f. tris(acetylacetonato)manganese(III), [Mn(acac)₃]

g. potassium trioxalatoferrate(III) trihydrate K₃[Fe(C₂O₄)₃]. 3H₂O.

h. Prussian blue, Fe₅[Fe(CN)₆]₃.

i. sodium hexanitritocobaltate(III), Na₅[Co(ONO)₆].

j. Schiff base complexes of cobalt and nickel.

SUGGESTED BOOKS:

<table>
<thead>
<tr>
<th>CHE492</th>
<th>Laboratory Techniques in Organic Chemistry -II</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Organic mixture separation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Separation of ternary mixtures by detection of extra elements in organic compounds by non-breakable sodium ignition apparatus (NOSIA)</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Multistep organic synthesis</td>
<td></td>
</tr>
</tbody>
</table>
a) Preparation of oxidizing agent and its use
b) Preparation nitro compound and its derivative
c) Preparation of organic compounds by Mannich reaction and Doebner modification of Knoevengel reaction.

3. **Chromatographic Techniques**
 Paper, thin layer and column chromatography

4. Draw structures using ChemDraw

SUGGESTED BOOKS

| M. Sc. Chemical Sciences
| Third Semester
| CHE501 Advanced Inorganic Chemistry-III | 3 |

Unit I:
Redox Reactions by Excited Metal Complexes
Charge transfer spectra; Intra ligand and charge transfer to solvent state, metal complexes as redox reactants, reducing and oxidizing properties of Ru(bipy)₃, comparison with Fe(bipy)₃, role of spin-orbit coupling, applications of redox processes of low energy reactants into high-energy products and chemical energy into light, water photolysis, metal colloids, dye sensitized solar cell.

Unit-II:
Inorganic Reactions Mechanisms
Metal ligand equilibrium in solution, kinetically indistinguishable schemes, rate scale, mechanistic simulation; associative, dissociative,
interchange, nucleophilic, electrophilic pathways; cross reactions and Marcus-Hush theory, Hammett relation.

Substitution Reactions

Square planar and octahedral complexes, inorganic nucleophilicity scales, proton ambiguity, kinetics of chelate formation.

Redox reactions

Electron transfer reactions, mechanism of one-electron transfer reactions, outer sphere type reactions, inner sphere type reactions.

Photochemical Reactions

Unit III:

Organometallics Reactions and Catalysis

Reactions involving gain and loss of ligands, reactions involving modification of ligands, Metathesis reactions; σ-bond metathesis, π-bond metathesis and Ziegler-Natta polymerization, Commercial Catalytic process; homogeneous, heterogenous and hybrid catalysts, Isolobal analogy.

SUGGESTED BOOKS:

<table>
<thead>
<tr>
<th>CHE502</th>
<th>Applied Physical Chemistry-III</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-I:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic structure of solids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free electron theory of solids, results of free electron theory; limitations and success of free electron theory, Fermi distribution, Fermi sphere, volume of Fermi sphere, expression for energy levels in a solid, density of states, expression for the number of energy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
levels in a Fermi sphere.

Electrical properties of Solids

Electronic conductivity: Ohm’s law, derivation of Ohm’s law, Hall Effect, Band theory, Zone theory, Brillion zones, K-space, k-vector, Significance of k-vector, semiconductors, energy bands in a semiconductor, temperature dependence of conductivity in metals and semiconductors, intrinsic and extrinsic semiconductors, Insulators, Piezo and inverse Piezo electric effect. ferro, and pyroelectricity, magnetic properties

Unit-II: Crystal Defects

Point defects; Schottky, Frenkel and interstitial, line defects and plane defects. Non-stoichiometric defects.

Heat Capacity of Solids

Definition, Theories of heat capacity of solids: Dulong-petit, Einstein’s theory, Debye Theory. Problems and their solution.

Superconductivity

Features of Superconductors, BCS theory, Meisner effect, Type I and Type II superconductors, Frolich diagram, Cooper pairs.

Unit-III:

Concepts in Electrochemistry

Electrochemical cell; conduction, reactions; Faradic and non-Faradic currents; reversible and irreversible cells; EMF series; standard electrode potential; Nernst equation; calculation of cell potential; effect of current; ohmic potential; polarization; decomposition potential; over voltage; concentration polarization; reference electrodes hydrogen electrode, calomel, and silver/silver chloride; metallic electrodes- electrodes of first, second and third kind; membrane electrodes- classifications and properties; principle, design; theory of ion selective electrodes; glass electrode. Polarographic, amperometry and voltammetry.

SUGGESTED BOOKS:
CHE503 | Photochemistry and Pericyclic Reactions-III

<table>
<thead>
<tr>
<th>Unit-I: Radical and carbene chemistry</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation and reactions of free-radicals: radical abstraction reactions; nitrogen and oxygen centred cleavage; radical reactions involving nitroso and oximes; hydrogen abstraction reactions; radical addition reactions. Carbenes; generation and reactions of diazo compounds, cyclopropanation reactions.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-II: Photochemistry</th>
<th></th>
</tr>
</thead>
</table>
compounds, photoreduction by hydrogen abstraction.

Unit-III:

Pericyclic reactions

SUGGESTED BOOKS:

CHE504 Separation Techniques-III

Unit-I:

Partition Chromatography
Introduction; theory; technique of partition chromatography; Liquid-liquid partition chromatography; reversed phase partition chromatography; stationary support materials
Paper Chromatography- introduction; principle; theory; types; technique; choice of solvent; two-dimensional paper chromatography; applications;

Thin Layer Chromatography (TLC)
Definition; mechanism; efficiency of thin layer plates; methodology (technique);

Unit-II:
Column Chromatography
Definition; types; principle; elution in column chromatography experimental requirements; theory of development; Van Deemeter equation and its modern version; qualitative and quantitative analysis; applications.

Gel permeation chromatography
Gel chromatography; mechanism of gel permeation chromatography (GPC); instrumentation and applications.

Unit III:
Gas Chromatography
Introduction; definition; instrumentation; technique; applications; HPLC: Theory, principles, instrumentation, applications.
Hyphenated Techniques
Coupled techniques; GC-FTIR, GC-MS, LC-MS, MS-MS.

SUGGESTED BOOKS:
2. Instrumental Methods of Inorganic Analysis; A. I. Vogel, ELBS
3. Fundamentals of Analytical Chemistry; D. A. Skoog; D. M. West, F. J. Holler, 7th Edn

<table>
<thead>
<tr>
<th>M. Sc. Chemical Sciences</th>
<th>Third Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE541</td>
<td>Laboratory Techniques in Physical Chemistry -III</td>
</tr>
</tbody>
</table>

I. Polarimetry
1. Kinetics of the inversion of sucrose in presence of HCl.
2. Determination of the concentration of a sugar solution.
3. Determination of the concentration of HCl.
4. Determination of the relative strength of acids.

II. Refractometry

1. Identification of pure organic liquids and oils.
2. Determination of molar refractions of pure liquids.
3. Determination of concentration of solutions (KCl-water, glycerol-water).
4. Determination of molar refraction of solids.
5. Study of complex formation between potassium iodide and mercuric iodide system.

III. Distribution law

1. Distribution coefficient of iodine between an organic solvent and water.
2. Distribution coefficient of benzoic acid between benzene and water.
3. Determination of the equilibrium constant of the reaction $\text{KI + I}_2 \leftrightarrow \text{KI}_3$

IV. Conductivity Measurements

1. Verification of Onsager equation.
2. Determination of the degree of ionization of weak electrolytes.
3. Determination of pKa values of organic acids.
5. Titration of a mixture of acids against a strong base.
6. Titration of a dibasic acid against a strong base.

V. Potentiometry

1. Determination of single electrode potentials (Cu and Zn).
3. Titration of a mixture of acids against a strong base.
4. Determination of end point of a titration using Gran Plot.
5. Determination of the concentration of a mixture of Cland ions.

SUGGESTED BOOKS:

1. Advanced Practical Physical Chemistry, J. B. Yadav, Goel
|-------------------------|

CHE542 Laboratory Techniques in Inorganic Chemistry -III

<table>
<thead>
<tr>
<th>I. Estimation and Separation (Any five):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Estimation of nitrogen by Kjeldahl’s method.</td>
</tr>
<tr>
<td>2. Estimation of sulphur/halogen by fusion method.</td>
</tr>
<tr>
<td>4. Separation of Cu and Ni on cellulose column.</td>
</tr>
<tr>
<td>5. Separation and determination of Zn and Cd using Ion exchanger.</td>
</tr>
<tr>
<td>7. Separation and determination of chloride and bromide using Ion exchanger.</td>
</tr>
<tr>
<td>8. Evaporation and determination of chloride and iodide using Ion exchanger.</td>
</tr>
<tr>
<td>10. Separation and determination of Cl⁻ and I⁻ (aqueous-acetone medium).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. Solvent Extraction (Any five):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Determination of Fe(III) by chloride extraction in ether.</td>
</tr>
<tr>
<td>2. Determination of Fe(III) as the 8-hydroxy quinolate (oxinate) by extraction in chloroform.</td>
</tr>
<tr>
<td>3. Quantitative analysis of tri-component mixture of metal ions by gravimetrically, volumetrically and spectrophotometrically.</td>
</tr>
<tr>
<td>a. Mixed solution of Cu²⁺ - Ni²⁺ - Zn²⁺</td>
</tr>
<tr>
<td>b. Mixed solution of Cu²⁺ - Ni²⁺ - Fe³⁺</td>
</tr>
<tr>
<td>4. Spectrophotometric determination:</td>
</tr>
</tbody>
</table>
c. Zirconium-Alizarin red complex: slope ratio method.
d. Phosphate, nitrate, fluoride and sulphate

5. Analysis of dolomite.
6. Analysis of brass.
7. Colorimetric determination of chromium (VI) (in ppm) using 1,5 diphenyl carbazide as a reagent for color development.

Suggested Books:

M. Sc. Chemical Sciences
Fourth Semester

CHE551 Advanced Inorganic and Nanochemistry
/ Inorganic Spectral Techniques Elective-IV 3

Advanced Inorganic and Nanochemistry

Unit I:

Principles and concepts of Green Chemistry

Introduction, definition, principles, atom economy, atom economic and atom uneconomic reaction, reducing toxicity, waste minimization techniques, on-site waste treatment, design for degradation, polymer recycling.

Catalysis and Green Chemistry

Introduction to catalysis, heterogeneous catalysis-basics, zeolites, sulfonated resins, clays, oxidation, catalytic converters;
homogeneous catalysis-transition metal catalysis, asymmetric catalysis; phase transfer catalysis, biocatalysis, photocatalysis.

Unit II:

Nanochemistry
Introduction to nanomaterials, role of size in nanomaterials, nanoparticles, stability of nanoparticles, structures and classification of nanomaterials, properties of materials & nanomaterials.

Fabrication of Nanomaterials
Chemical, physical and biological methods.

Nanocomposites
Introduction, types of nanocomposite, core-shell structured nanocomposites.

Unit III:

Supramolecular Chemistry
Molecular recognition, molecular receptors for different types of molecules including arisonic substrates, design, and synthesis of co-receptor molecules and multiple recognition, supramolecular reactivity and catalysis, transport processes and carrier design, supramolecular devices: electronic, ionic and switching devices, supramolecular photochemistry, some example of self-assembly in supramolecular chemistry.

Books Suggested:

| Inorganic Spectral Techniques | |
Unit I:

Nuclear Magnetic Resonance (NMR) spectroscopy
Signal intensities and spin-spin coupling to structure determination of inorganic compounds carrying NMR active nuclei like 11B, 15N, 19F, 29Bi, 31P, coupling to quadrupolar nuclei, NMR of paramagnetic substances in solution.

Unit II:

Mossbauer Spectroscopy
Doppler shift and recoil energy, isomer shift and its interpretation, quadrupole interactions, effect of magnetic field on Mossbauer spectra, applications to metal complexes, metal carbonyls, Fe-S clusters and tin compounds.

Vibrational Spectroscopy
Applications of vibrational spectroscopy in investigating the stretching and bending modes of molecules (AB$_3$ and AB$_4$ types).

Unit III:

Electronic Paramagnetic Resonance (EPR) spectroscopy
Electronic Zeeman effect and EPR transition energy, EPR spectrometers, presentation of spectra. effects of electron Zeeman, Hyperfine splitting in isotropic systems, spin polarization mechanism and McConnell’s relations Anisotropy in g-value, EPR of triplet states, zero field splitting, Kramer's rule, survey of EPR spectra of first-row transition metal ion complexes.

Nuclear Quadrupolar Resonance (NQR) spectroscopy:
Quadrupolar moment, energy levels of a quadrupolar nuclide and effect of asymmetry parameters and energy levels, Effect of an external magnetic field, selected examples for elucidation of structural aspects of inorganic compounds using NQR spectroscopy.

Books Suggested:

CHE552 Polymer Chemistry/Molecular Bio-physical Chemistry

Elective-IV

Polymer Chemistry

Unit 1:
Classification of polymers, polymerization reactions and kinetics, Molar mass determinations, molecular Forces and chemical Bonding in polymers, solubility of polymers, thermal stability, theta solvents. Glass Transition Temperature, Polymer Degradation, Polymer Reactions, Thermodynamics and friccohesity of metallic and silicon polymers.

Unit 2:
Copolymerization: Basic, Types of co-polymerizations, Kinetics of free Radical Copolymerization, Binary copolymerization equation, Composition of copolymers,

Unit 3:
Polymer Synthesis: bulk polymerization, precipitation, Emulsion polymerization, Suspension polymerization, Interfacial polymerization, Methods for determination of average molecular weight of polymer: (colligative property measurement, Light Scattering method, Dilute solution viscometry survismetry, Ultra
Centrifugation, Weight Distribution Methods. Rheology of polymer: Structural stress and strain, survismetrically studies of silicon polymers, Rheological and interfacial properties of silicone oil emulsions

Books Suggested:

Molecular Bio-physical Chemistry

Unit I:

Molecular Bio-physical Chemistry

Electrophoresis - principles of free electrophoresis, zone electrophoresis, gel electrophoresis and its applications in qualitative and quantitative study of proteins.

Determination of isoelectric point of a protein. Electroosmosis and streaming potential and its biological significance.

Diffusion of solutes across bio membranes and its application in the mechanism of respiratory exchange. “Salting In” and “Salting Out” of proteins.

Unit II:

Biological significance of surface tension

Application of sedimentation velocity and sedimentation equilibrium method for molecular weight determination of proteins. Surface
energy and friccohesity of particles in process of coagulation.

Unit III:

Macromolecules

Polypeptides, helix random coil transition in polypeptides.

Structure of nucleic acids

Watson Crick model, supercoiled DNA, denaturation and renaturation of DNA, polymerase chain reactions.

Books Suggested:

<table>
<thead>
<tr>
<th>CHE553</th>
<th>Advanced Organic Chemistry/ Organic Synthesis /Elective-IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-I:</td>
<td>Advanced Organic Chemistry</td>
</tr>
</tbody>
</table>

Optical activity in the absence of chiral atoms:

Chirality in biphenyls, adamentanes, ansa compounds, cyclophanes, \textit{trans}-cyclooctene, catenanes, rotaxanes and helicenes. Chirality of organic compounds due to the presence of silicon, nitrogen, phosphorous, arsenic and sulphur atoms.

Functional group protection: protection of NH groups, OH groups, Diols, Carbonyl groups, carboxyl group, double and triple bonds.

Unit-II:

Retrosynthetic Analysis

Reversal of the carbonyl group polarity, steps in planning synthesis, construction of the carbon skeleton, functional group
interconversion, linear and convergent synthesis, Synthesis of saturated heterocycles and 3-, 4-, 5- and 6-membered rings. Synthesis of some complex molecules using disconnection approach.

Unit III:

Formation of C-C single bonds using organometallic reagents
Organolithium reagents, Organo magnesium reagents, Organolithium reagents, Organocerium reagents, organocopper reagents, organochromium reagents, organozinc reagents, organoboron reagents, organosilicon reagents, palladium catalysed coupling reactions.

SUGGESTED BOOKS

Organic Synthesis

Unit-I:

Oxidation
Oxidation of alcohols to aldehydes and ketones, reagents for alcohol oxidation, chemo selective agents for oxidising alcohols, oxidation of tertiary allylic alcohols, oxidation carboxylic acids, oxidation of terminal alkynes, allylic oxidation of alkenes.
Unit-II:

Reduction

Reduction of carbonyl compounds, nucleophilic reducing agents, electrophilic reducing agents, regio and chemoselective reductions, diastereoselective reduction of cyclic ketones, diastereofacial selectivity in reduction, enantioselective reductions.

Unit III:

Hydrogenation of carbon -carbon double bonds; dissolving metal reductions, hydroboration, organoboranes and asymmetric synthesis of alcohols from alkenes, oxymercuration- demercuration, epoxidation of alkenes, epoxides from halohydrins, preparation of epoxides from ketones, epoxidation of allylic alcohols, dihydroxylation of alkenes, halolactonisation.

Reduction of carbon -carbon triple bonds; semi reduction of alkyne (Lindlar type catalyst), hydroboration of alkynes and enynes, preparation of trans-alkenes from alkynes, reduction of propargylic alcohols.

SUGGESTED BOOKS

CHE554 Advanced Analytical Methods/ Medicinal Chemistry Elective-IV 3

Advanced Analytical Methods

Unit -I:

NMR Spectroscopy

CW and PFT techniques- types of C-NMR spectra- Homonuclear
(13C-13C) and heteronuclear (13C–1H, 13C–2H) couplings.

Unit -II:

2D- NMR

Correlation spectroscopy (COSY) - HOMOCOSY, HETERO – COSY, INADEQUATE NOESY. HSQC, HMBC and TOCSY. Applications

Unit -III:

Mass spectrometry

principle, instrumentation, ionization methods-EI, CI, FAB, arc and spark, photo ionization; thermal ionization; FI and FD, ESI, APCI, laser induced, photoelectric ionization, SIMS, mass analyzers-magnetic, double focusing, time of flight; single and triple quadrupolar, ion trap, ion cyclotron resonance analyzer, MALDI.

SUGGESTED BOOKS

4. Spectroscopic Identification of Organic Compounds; R.M. Silverstein and Webster
5. NMR in Chemistry – A Multinuclear Introduction; William Kemp
Pharmacokinetics, Pharmacodynamics, Theories of drug activity & Drug design

Antibiotics
Structure elucidation and synthesis of streptomycin, penicillins, cephalosporin-C, chloromycetin and tetracyclins (terramycin and aureomycin).

Antidiabetics
Sequence of A- & B- chains of insulin, glibenclamide, metformin, ciglitazone.

Antihistamines
Methapyrilene, chlorpheniramine.

Antivirals
Acyclovir, amantidine, rimantidine and zidovudine.

Unit II:

Unit III:
Cardiovascular drugs

Local anti-infective agents
Introduction and general mode of action. Synthesis of sulphonamides, furazolidone, nalidixic acid, ciprofloxacin, dapsone, aminosalicylic acid, isoniazide, ethionamide, ethambutal, fluconazole, econozole, griseofulvin, chloroquin and primaquin.

SUGGESTED BOOKS