

Syllabus for MSc (Nanoscience) (2023-2024)

CREDIT STRUCTURE For M.Sc. Nanoscience School of Nano Sciences [CUG, GANDHINAGAR] (2023-24)

	(2023-24)	
Course Code	Course Title	Credits
	M.Sc. Semester I (Total Credits -22)	
	CORE COURSES	
NSC 401	Physics of Nanomaterials	4
NSC 402	Chemistry of Nanomaterials	4
NSC 407	Synthesis and Characterization of Nanomaterials	4
NSC 408	Nanotoxicology and Biosafety	4
	OTHER COURSES	
NSC 441	Nano Science Practicals – I	4
	Holistic education offered at University level	2
	M.Sc. Semester II (Total Credits -22)	·
	CORE COURSES	
NSC 453	Advanced Characterization of Nanomaterials - II	4
NSC 454	Nanostructured Materials and their Application	4
	OPTIONAL COURSES (total 08 credits from any of the two c	ourses given below
NSC 471	Mathematics and Computational Science	4
NSC 474	Nanotechnology in Agriculture and Food Processing	4
NSC 477	Thin Film and Vacuum Technology	4
NSC 478	Basics of Pharmaceutical Sciences	4
NSC 479	Carbon Nanoscience and its Application	4
NSC 480	Basics of Nanotechnology in Tissue Engineering	4
	OTHER COURSES	
NSC 491	Nano Science Practicals – II	4
	Holistic education offered at University level	2
	M.Sc. Semester III (Total Credits -20)	
	CORE COURSES	
NSC 502	Nano fabrication and Nanotechnologies	4
NSC 503	Research Methodology	4
	OPTIONAL COURSES (total 08 credits from any of the two courses)	urses given below)
NSC 521	Nanomaterials in Energy Technology	4
NSC 523	Semiconductor Materials and Applications	4
NSC 524	Nano Devices and Sensors	4
NSC 525	Environmental Nanotechnology	4
NSC 526	Basics of Nanomedicines	4
NSC 527	Nanocarriers for Drug and Gene Delivery	4
NSC 528	Nanophotonics	4
	OTHER COURSES	
NSC 541	Seminar	2
	Multidisciplinary course offered by the other Schools	2
	M.Sc. Semester IV (Total Credits -20)	
NSC 591	Dissertation & Viva	16
NSC 592	Term paper, Project proposal and Defense -I	4
TOTAL		84

SEMESTER I

CORE COURSES

NSC 401 Physics of Nanomaterials- (4 Credits)

Pre-requis	sites for	the Course: Basic understanding of Physics	
Course O	bjective	: Introduction to Physics of Nanomaterials	
Course ou	Course outcome : On completion of the course, the students will be able to		
Unit-I	LO1	Understand dual nature of radiation and matter	
Unit-II	LO2	Learn atomic structure and Schrodinger equation	
Unit-III	LO3	Learn Schrodinger approach for the hydrogen atom and introduction to quantum.	
		numbers	
Unit-IV	LO4	Learn molecular physics and formation of bonds.	
COLID OF CONTRACT			

COURSE CONTENT

Unit I

Particle properties of waves: Black body radiation, Photoelectric effect, Compton Effect; Wave properties of particles: De Broglie waves, Wave description, Particle diffraction, Uncertainty principle and application of uncertainty principle.

Unit II

Atomic structure: Electron orbits, The Bohr atom; Quantum Structure: 2D (Quantum well), 1D (Quantum Wires), 0D (Quantum Dots); Quantum mechanics: Schrodinger equation (steady state form), Particle in a box, Finite potential well; Barrier Penetration: Step Potential, Rectangular Barrier Penetration, Applications of Barrier Penetration, Tunnelling: Scanning Tunnelling Microscope; Harmonic Oscillator

Unit III

Schrodinger approach for the hydrogen atom; Quantum numbers: principal, orbital and magnetic; Electron probability density; Radiative transitions. Selection rules; Normal Zeeman effect; Degeneracy of Hydrogen atom energy levels; Spin Orbit coupling

Unit IV

Molecular Physics: molecular bond, mechanism of covalent bond, H₂⁺ molecular ion, The Hydrogen molecule; Molecular Spectra: Rotational, Vibration

Levels and Electronic; Raman Spectrum; Size dependent physical, chemical, optical and magnetic properties

Text/References

- 1. Concepts of Modern Physics by Arthur Beiser, TMH Publications.
- 2. Introductory Nanoscience by Masaru Kuno, Garland Science Publications.
- 3. Introduction to Solid State Physics by Charles Kittel, Wiley Publications.
- 4. Handbook of Nanotechnology by Bharatbhushan, Springer Publications, 2010.

NSC 402 Chemistry of Nanomaterials (4 Credits)

Pre-requis	Pre-requisites for the Course: Basic knowledge of chemistry		
Course O	bjective	e: To provide the knowledge and understanding of chemistry of nanomaterials in term	
	-	esis methods of nanomaterials, morphology, characterization, and different chemical	
properties			
Course or	itcome:	On completion of the course, the students will be able to:	
Unit-I	LO1	Know about the nomenclature of nanomaterials and how properties changes in nanomaterials (metals, alloys and semiconductors) as compared to their bulk counterpart. Students will also acquire knowledge about carbon nanomaterials their properties. They will also understand the quantum confinement and basics about device fabrications.	
Unit-II	LO2	Learn how nanomaterials will grow by bottom-up methods and self-assembled in beautiful morphologies. They can correlate the nanoscale phenomenon by quantum mechanics with example of particle in one dimension box. They will also understand about the basics of kinetics/thermodynamics of nanomaterials and stability of colloidal sols and how zeta potential will help in it.	
Unit-III	LO3	Learn about solid state chemistry and how crystal structures will change in nanomaterials. This understanding will be helpful in XRD data analysis.	
Unit-IV	LO4	Understand the novel properties like optical, electronic, photonic, magnetic and catalytic. This will be helpful for students in advanced level research further.	
		COURSE CONTENT	

COURSE CONTENT

Unit I

Classification and nomenclature of nanomaterials: Nanosized metals and alloys, semiconductors, ceramics—a comparison with respective bulk materials, Organic semiconductors, carbon materials, quantum dots, quantum wells, quantum rods, quantum wires, quantum rings; bulk nanostructured, nanocomposites, nanomachines and Devices

Unit II

Characteristics of Nanomaterials: Nucleation and growth of nano systems, self-assembly, functional nanomaterials and nanostructured thin films. Quantum confinement in semiconductors – particle in a box like model for quantum dots, origin of charge on colloidal sols, zeta potential, basics of thermodynamics and kinetics related to nanoparticles

Unit III

Structure and Morphology of Nanoparticles: Crystal structure of materials, packing fraction, basics of solid-state chemistry, specific surface energy and surface stress and effect on the lattice parameter. Nanoparticle morphology and morphology of supported particles

Unit IV

Novel Properties of Nanomaterials: Size and shape dependent optical, emission, electronic, transport, photonic, refractive index, dielectric, mechanical, magnetic, non-linear optical properties; transition metal sols, origin of plasmon band, Mie theory, influence of various factors on the plasmon absorption, catalytic properties.

Text/References

- 1. Klabunde, K.J. (Ed.), "Nanoscale Materials in Chemistry", John Wiley & Sons Inc. 2001
- 2. Nalwa, H.S. (Ed.), "Encyclopedia of Nanoscience and Nanotechnology" 2004
- 3. Sergeev, G.B. Nanochemistry, Elsevier, B.V. 2010
- 4. Schmid, G. (Ed.), "Nanoparticles", Wiley-VCH Verlag GmbH & Co. KgaA.2004
- 5. Rao, C.N.R., Müller, A. and Cheentham, A.K. (Eds.), "Chemistry of Nanomaterials", Wiley VCH. 2005

NSC 407 Synthesis and Characterization of Nanomaterials (4 Credits)

Pre-requis	Pre-requisites for the Course: Basic knowledge of physic and chemistry		
	•	e: To provide the detail knowledge about the top down and bottom-up synthesis of	
nanomater	rials and	their characterization through advanced analytical techniques.	
Course ou	tcome: (On completion of the course, the students will be able to:	
		Differentiate the nanomaterials according to their confinements in 1-D, 2-D and 3-D.	
Unit-I	LO1	They will also learn the different top down and bottom-up approaches of	
		nanomaterials synthesis.	
		Learn the synthesis of nanomaterials by sol-gel method, hydrothermal, micro	
Unit-II	LO2	emulsion technique, chemical reduction, decomposition of organometallic precursors	
Omt n		and chemical vapor deposition. They will also get familiar with low temperature.	
		cryochemical synthesis.	
		Understand ball milling, sputtering, microwave plasma and photolysis processes.	
	LO3	They will also learn the role of surfactants in the formation of self-assembled	
Unit-III		nanostructures. They will also learn the various parameters required for good quality	
		thin film deposition with quantum dots and nanowires morphology. Students will get	
		familiar with how to make single walled and multi walled carbon nano tubes.	
		Learn the working and principles of various analytical tools such as XRD, UV-VIS	
Unit-IV	LO4	spectroscopy, Raman spectroscopy and XPS required for the characterization of	
		nanomaterials. They will be able to interpret and analyze the data.	
	COURSE CONTENT		

Unit I

Classifications and types of nanomaterials as nano particles and 1D 2D 3D nanomaterials. Concept of bulk versus nanomaterials and dependence of properties on size. Introduction to "Top down" vs. "Bottom up" approach of synthesis with suitable examples.

Unit II

Nano synthesis techniques based on liquid and vapor phase as the starting material. The study of wet chemical methods like sol-gel method, hydrothermal, micro emulsion technique, chemical reduction, decomposition of organometallic precursors and chemical vapor deposition, metallo-organic chemical vapor deposition. Cryochemical synthesis, study of rapid solidification route, electro and electroless deposition etc. along with suitable examples

Unit III

Mechanical milling, laser ablation, microwave and ultrasound assisted synthesis sputtering and microwave plasma, photolysis, radiolysis, surfactant behavior, micelles, self-assembled mono layers (SAM"s), Langmuir-Blodget (LB) films. Designing of advanced integrated nanocomposites, preparation of quantum dots, nano wires and films, preparation of single-walled and multi-walled nanotubes.

Unit IV

Techniques of characterization of size of nano powders/ particles using BET method and laser diffraction. Various spectroscopic techniques like optical spectroscopy. UV visible and Infrared spectroscopy. Raman spectroscopy. X-ray photoelectron spectroscopy. Basic understanding of each technique with special emphasis on characterization at nano scale. X-ray Fluorescence (XRF), X-ray diffraction (XRD) and Small Angle X-ray Scattering principles.

Text/References

- 1. Nanomaterials Chemistry by Rao C. N., A. Muller, A. K. Cheetham, WileyVCH, 2007.
 - 2. Nanomaterials and Nanochemistry by Brechignac C., P. Houdy, M. Lahmani, Springer publication, 2007.
 - 3. Nanoscale materials in chemistry by Kenneth J. Klabunde, Wiley Interscience Publications, 2001.
 - 4. Nanochemistry by Sergeev G.B., Elseiver publication, 2006.
 - 5. Nanostructures and Nanomaterials, synthesis, properties and applications by Guozhong Cao, Imperial College Press, 2004.
 - 6. Nanomaterials Handbook by Yury Gogotsi, CRC Press, Taylor & Francis group, 2006.

NSC 408: Nanotoxicology and Biosafety (4 Credits)

Pre-requis	Pre-requisites for the Course: Fundamental knowledge of biology		
Course O	Course Objective: Introduce fundamental issues of toxicology and biosafety related to nanomaterials		
Course ou	Course outcome : On completion of the course, the students will be able to:		
Unit-I	LO1	Know about different route of entry of NPs in human body and its attribute related to toxicity	
Unit-II	LO2	Learn about classification of nanoparticles and their invitro toxicological effects	
Unit-III	LO3	Understand about the different mechanisms of nanomaterial toxicity	
Unit-IV	LO4	Learn about different assays used for determining cellular toxicity in-vitro and in-vivo.	
	COURSE CONTENT		

Unit I

Introduction, source of nanoparticles, epidemiological evidence, entry routes for nanoparticles in human body: lungs, intestinal tract and skin, Deposition and translocation in the body, Attributes contribute to nanomaterials toxicity.

Unit II

Classification of nanoparticles for biological applications, nanoparticles interaction with the biological membrane, uptake and toxicological effects of different nanoparticles.

Unit III

Mechanisms of nanomaterial toxicity: oxidative stress, ecotoxicity, genotoxicity, hemolytic toxicity, mutagenicity and immunotoxicity.

Unit IV

Assessment of nanomaterial toxicity: In vitro toxicity assessment-cell viability, lactate dehydrogenase release, reactive oxygen species generation, change in mitochondrial membrane potential and nuclear fragmentation. In vivo toxicity assessment: inflammatory response, acute toxicity studies, LD50 determination, histopathological studies.

Text/References

1.Handbook of Nanotoxicology, Nanomedicine and Stem Cell Use in Toxicology. Saura C Sahu, Daniel A Casciano. 2.Nanotoxicology - Interactions of Nanomaterials with Biological Systems. Yuliang Zhao and Hari Singh Nalwa. 3.Biointeractions of Nanomaterials. Vijaykumar B. Sutariya, Yashwant Pathak 4. New Technologies for Toxicity Testing. Michael Balls DPhil, Robert D. Combes PhD, Nirmala Bhogal

OTHER COURSES

NSC 441 Nano Science Practicals-I (4 Credits)

Pre-requisites for the Course: Basic understanding of chemistry and materials

Course Objective: To impart detailed knowledge about synthesis of nanomaterials by different. approaches and their characterization through advanced analytical techniques.

Course Outcome: On completion of the course, the students will be able to synthesize nanomaterials by different methods such as chemical, hydrothermal and microwave methods. They will also get familiar with characterization tools like UV-Vis spectroscopy and XRD.

COURSE CONTENT

- 1. Synthesis of Au/Ag metal nanoparticles by chemical route
- 2. Optical properties of Au/Ag nanoparticles by using UV-Vis spectroscopy
- 3. Synthesis of transition metal oxide nanoparticles by hydrothermal route
- 4. Microwave synthesis of materials for dental implants
- 5. Synthesis and characterization of biodegradable nano micelles
- 6. To determine the drug concentration using UV-Vis spectroscopy
- 7. To investigate the optical & structural properties of nanocrystalline CdS thin film deposited using chemical bath method
- 8. To study the optical, structural, and surface morphological properties of ZnO nanostructures prepared via sol-gel method
- 9. Synthesis and spectroscopic characterization of metal oxide nanoparticles

10. To analyze and confirm the crystal structure of given nanomaterials by X-ray diffraction technique

Text/References

- 1. Nanomaterials Chemistry by Rao C. N., A. Muller, A. K. Cheetham, WileyVCH, 2007.
- 2. Nanomaterials and Nanochemistry by Brechignac C., P. Houdy, M. Lahmani, Springer publication, 2007.
- 3. Nanoscale materials in chemistry by Kenneth J. Klabunde, Wiley Interscience Publications, 2001.
- 4. Nanochemistry by Sergeev G.B., Elseiver publication, 2006.
- 5. Nanostructures and Nanomaterials, synthesis, properties and applications by Guozhong Cao, Imperial College Press, 2004.
- 6. Nanomaterials Handbook by Yury Gogotsi, CRC Press, Taylor & Francis group, 2006. NSC

Holistic education offered at University level (2 credits)

SEMESTER II

CORE COURSES

NSC 453 Advanced Characterisation of Nanomaterials - II (4 Credits)

Pre-requis	Pre-requisites for the Course: Understanding of basics of Physics and Chemistry			
Course O	bjective	: Introduction to advanced instrumental techniques for the characterization of		
nanomater	nanomaterials			
Course outcome : On completion of the course, the students will be able to:				
Unit-I	LO1	Understand advanced electron microscopic techniques.		
Unit-II	LO2	Understand advanced force microscopic techniques.		
Unit-III	LO3	Know magnetic and mechanical characterization of materials.		
Unit-IV	LO4	Learn electrical and dielectric characterization of materials.		
	COURSE CONTENT			

Unit I

Understanding of micro structural developments in nanomaterials using optical microscopy, Scanning Electron Microscopy (STM) and Transmission Electron Microscopy (TEM) approach, High resolution Transmission Electron Microscopy (HRTEM).

Unit II

Advanced Microscopic techniques: Scanning probe microscopy e.g. Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM), Magnetic Force Microscopy (MFM), Chemical Force Microscopy (CFM).

Unit III

Magnetic measurements: Vibrating sample magnetometer (VSM),

Electron Paramagnetic Resonance (EPR), Nuclear Magnetic Resonance (NMR)

spectroscopy; Mechanical properties: Ultimate Tensile Strength, Micro hardness, nano indentation (elastic and plastic deformation).

Unit IV

Electrical measurements: I-V/C-V characteristics, Hall effects, FET characteristics, R-T measurements, Dielectric measurements.

Text/References

- 1 The structure and properties of materials by R.M.Rose, L.A.Shepard and J. Wulff, Wiley Eastern Ltd., 1966.
 - 2. Semiconductor Devices Physics and Technology by S.M. Sze, Wiley, 1985.
 - 3. Semiconductor Material and Device Characterization by D. K. Schroder, John Wiley & Sons, New York, 1998.
 - 4. Encyclopedia of Materials Characterization by C. Richard Brundle Charles A. Evans, Jr.Shaun Wilson ,Butterworth-Heinemann, 1992.

NSC 454 Nanostructured Materials and their Applications (2 Credits)

Pre-requis	ites for	the Course: Basic knowledge of nanoscience and nanomaterials
	•	s: To study about the synthesis of composite nanomaterials. To study the different
properties	of ceran	nic nanomaterials.
To study a	dvance	miscellaneous applications of nanotechnology.
Course ou	tcome:	On completion of the course, the students will be able to:
Unit-I	LO1	Understand the synthesis of the metal-metal nanocomposites. They will also acquire
		the deep knowledge about the nuclear energy applications of metal-metal composites.
		They will also get overview about magnetic nanocomposites and use of these
		nanocomposites in spintronics applications. They will also learn about high
		temperature applications of nanocomposites.
Unit-II	LO2	Learn about the definition of ceramic and how ceramics are different from other
		nanomaterials. They will also be familiar with the basics of dielectrics, ferroelectrics
		and diblock copolymers which are very important for memory devices. They will
		also learn the role of nanopolymers in catalysts.
Unit-III	LO3	Know about the different conducting polymers which are very crucial for the different
		applications nowadays. They will also be able to be synthesized conducting polymers
		by chemical and electrochemical methods. They will also get clear understanding
		about of different applications of conducting polymers like corrosion.
		protection, sensors and electrochemical energy devices.
Unit-IV	LO4	Learn about the biological applications nanocomposites, ceramics, and polymers.
		They will be familiar about the dental implantation and other bio-based consumer
		products. They will also learn the tissue engineering and biopolymer tagging.
COURSE CONTENT		

Unit I

Nano Composites and their Applications, Metal-Metal nanocomposites for nuclear energy applications, Magnetic nanocomposites for Spintronics application, Ceramic nanocomposites for high temperature applications.

Unit II

Nano ceramics: Dielectrics, ferroelectrics and magneto ceramics, Nanopolymers: Preparation and characterization of diblock Copolymer based nanocomposites, Nanoparticles polymer ensembles; Applications of Nanopolymers in Catalysis.

Unit III

Classification of conducting polymers: Intrinsic and extrinsic conducting polymers - Chemical and electrochemical methods of the synthesis of conducting polymers – Applications of conducting polymers in corrosion protection, sensors, electronic and electrochemical energy devices.

Unit IV

Miscellaneous applications of nanotechnology: dental implants, consumer products, biomimetic nanomaterials for tissue engineering, biopolymer tagging, semiconductor quantum dots.

Text/References

- 1. Novel Nanocrystalline Alloys and Magnetic Nanomaterials- Brian Cantor
- 2. Nanoscale materials -Liz Marzan and Kamat.
- 3. Physical properties of Carbon Nanotube-R Satio.
- 4. Polymer nanocomposites: Edited by Yiu-Wing Mai and Zhong-Zhen Yu, First published 2006, Woodhead Publishing Limited and CRC Press LLC, USA.
- 5. Physics of Magnetism S. Chikazumi and S.H. Charap.
- 6. Magnetostriction and Magnetomechanical Effects E.W. Lee.
- 7. Carbon Nanotubes: Properties and Applications- Michael J. O'Connell.
- 8. Novel Nanocrystalline Alloys and Magnetic Nanomaterials- Brian Cantor
- 9. Nanoscale materials -Liz Marzan and Kamat.
- 10. Physical properties of Carbon Nanotube-R Satio.
- 11. Polymer nanocomposites: Edited by Yiu-Wing Mai and Zhong-Zhen Yu, First published 2006, Woodhead Publishing Limited and CRC Press LLC, USA.
- 12. Physics of Magnetism S. Chikazumi and S.H. Charap.
- 13. Magnetostriction and Magnetomechanical Effects E.W. Lee.
- 14. Carbon Nanotubes: Properties and Applications- Michael J. O'Connell.

OPTIONAL COURSES

NSC 471 Mathematics and Computational Science (4 Credits)

Pre-requis	Pre-requisites for the Course: Understanding of basic physics		
Course Objective: Introduction to computers, statistics and computational science			
Course outcome: On completion of the course, the students will be able to:			
Unit-I	LO1	Understand basics of computers and statistics	
Unit-II	LO2	Solve transcendental equations	
Unit-III	LO3	Learn Curve-Fitting by different techniques.	

Unit-IV I	LO4 I	Learn mo	lecular d	ynamics
-----------	-------	----------	-----------	---------

COURSE CONTENT

Unit I

Introduction to computers and statistics. Computer Arithmetic: Floating Point Numbers and Round Off Errors, Absolute and Relative Errors, Polynomial Interpolation: Numerical Integration by Trapezoidal Rule, Simpson's Rule, Error Analysis. Solution Of System of Linear Equations

Unit II

Solution of Transcendental Equation by Bisection Method and Newton"s Method. System Of Non-Linear Equations: Newton-Raphson"s Method. Finite difference method

Unit III

Curve-Fitting by Least Square Techniques. Numerical Solution Of ODE, Single Step Method Runge Kutta Methods, Numerical Solution To PDE, Stability and Convergence.

Unit IV

Introduction to molecular dynamics, first principle solution, potential determination, Density Functional Theory (DFT)

Text/References

- 1. Higher Engineering Mathematics by B. S. Grewal, Khanna Publishers Delhi
- 2. Introductory Numerical Analysis By S. S. Sastry, Prentice Hall Publishers

NSC 474 Nanotechnology in Agriculture and Food Processing (4 Credits)

Pre-requisites for the Course: Basic understanding of biology		
Course Objective: Learn about various application	of nanotechnology for agriculture and food	
processing		
Course outcome : On completion of the course, the	students will be able to understand about the	
Unit-I LO1 Various aspect of agriculture and	d types of nanomaterial utilized for it.	
Unit-II LO2 Various diagnostic and sensing I	mechanism used for agriculture	
Unit-III LO3 Different application of nanotect	hnology in agriculture	
Unit-IV LO4 Application of Nanotechnology	in packaging/increasing nutritional values or shelf	
life		

COURSE CONTENT

Unit I

Introduction: Rhizosphere, Soil Health-Different Indicators (Assays) for determining soil health. Surfactants-BiologicalandSynthetic, Pesticides, Insecticides, Herbicides, Weedicides, Biomagnification, Micro and Macro nutrients required by plants. Various types of nanomaterial utilized in agriculture.

Unit II

Nanoparticles in agricultural and food diagnostics: Enzyme Biosensors and Diagnostics - DNA-Based Biosensors and Diagnostics, Radiofrequency Identification. Lateral Flow (Immuno)assay-NucleicAcidLateralFlow(Immuno)assay-Flow-Through (Immuno)assays - Antibody Microarrays.

Unit III

Nanotechnology in food production: Food and new ways of food production -Efficient fractionation of crops, Efficient product structuring -Optimizing Nutritional Values - Applications of Nanotechnology in Foods: Sensing, Engineering Food Ingredients to Improve Bioavailability - Nanocrystalline Food Ingredients - Nano-emulsions - Nanoengineered Protein Fibrils as Ingredient Building Blocks.

Unit IV

Nanotechnology in food packaging: Reasons to Package Food Products. Physical Properties of Packaging Materials - Strength - Barrier Properties, Light Absorption - Structuring of Interior Surfaces - Antimicrobial Functionality - Visual Indicators - Quality Assessment - Food Safety Indication - Product Properties. Smart nanomaterials for packaging.

Text/References

- 1. Nanoparticle Assemblies and Superstructures by Nicholas A. Kotov, CRC, 2006.
- 2. Nanotechnology in agriculture and food production by Jennifer Kuzma and Peter VerHage,, Woodrow Wilson International, 2006.
- 3. Bio nanotechnology by David S Goodsell, John Wiley & Sons, 2004.
- 4. Nano biomaterials Handbook by Balaji Sitharaman, Taylor & Francis Group, 2011.

NSC 477 Thin Film and Vacuum Technology (4 Credits)

Pre-requis	Pre-requisites for the Course: Understanding of basic Physics		
Course O	bjective	: Introduction to thin film and vacuum technology	
Course or	Course outcome: On completion of the course, the students will be able to:		
Unit-I	LO1	Understand basics of vacuum technology	
Unit-II	LO2	Understand thin film growth	
Unit-III	LO3	Learn thin film deposition and etching techniques.	
Unit-IV	LO4	Learn thin film characterization methods.	
	COURSE CONTENT		

Unit I

Vacuum Technology: Gas Laws, Kinetic Theory of Gases, Conductance and Throughput, Gas Sources in a Vacuum Chamber, Vacuum Pumps.

Unit II Thermodynamics and Thin Film growth, Film Formation and Structure: Capillarity Theory, Atomistic Nucleation processes, Cluster Coalescence, Grain Structure of Films.

Unit III

Physical Vapor Deposition: Sputtering (Plasma Physics (DC Diode), rf Plasmas,

Magnetic Fields in Plasmas, Sputtering Mechanisms), Evaporation. Chemical Vapor Deposition:

Mechanisms, Materials, Chemistries, Systems. Etching: Wet Chemical Etching (Mechanisms,

Materials and Chemistries), Dry Plasma Etching/Reactive Ion Etching (Mechanisms, Materials and Chemistries).

Unit IV

Thin Film Characterization: Structural, Chemical, optical, electrical, magnetic: Structural, Chemical, optical, electrical, magnetic

Text/References

1 Thin Film Deposition and Patterning: R. K. Waits, American Vacuum Society, 1998. 2. The Materials Science of Thin Films: M. Ohring, Academic Press, Boston, 1991

3. Physics of Thin Films: Ludmila Eckertova, 2nd Plenum Press New York, 1986 Thin Film Phenomena: K. L. Chopra, McGraw-Hill, 1969

NSC 478: Basics of Pharmaceutical Sciences (4 Credits)

Pre-requis	Pre-requisites for the Course: Basic understanding of biology		
Course O	bjective	: Introduce fundamental of pharmaceutical sciences and product development	
Course ou	Course outcome : On completion of the course, the students will be able to:		
Unit-I	LO1	Know about the various pharmaceutical dosage forms and routes of drug	
		administration	
Unit-II	LO2	Understand the sources of drugs, pharmacokinetics and pharmacodynamic processes	
Unit-III	LO3	Learn about basics of pharmaceutical product development	
Unit-IV	LO4	Learn about the drug degradation and stability aspects of pharmaceutical products	
	COLIDGE COMPENIE		

COURSE CONTENT

Unit I

Introduction to pharmaceutical sciences, principles, and types of pharmaceutical dosage forms-solid, liquid, semi-solids, aerosols. Routes of drug administration

Unit II

Basics of pharmacology: Overview, sources of drugs, routes of drug administration, Pharmacokinetics-absorption, distribution, metabolism and excretion, Pharmacodynamics, Adverse drug reactions, Drug interactions.

Unit III

Pharmaceutical product development: Fundamental aspects, pharmaceutical excipients, biopharmaceutical considerations, Principles of solubilization, dissolution, partition coefficient, ionization, and bioavailability.

Unit IV

Kinetics and Drug stability: General concept of physical and chemical stability of pharmaceutical product, factors affecting drug stability, Degradation rate constant, Half-life determination and expiration dating, Introduction to ICH guidelines, Accelerated stability studies.

Text/References

- 1. Ansel"s Pharmaceutical Dosage Forms and Drug Delivery Systems. By: Loyd V. Allen, Howard C. Ansel
- 2. Essentials of Medical Pharmacology, by K.D. Tripathi. Published by Yaypee brothers medical publishers.
- 3. Rang & Dale's Pharmacology. James M. Ritter, Rod J. Flower, and Graeme Henderson,
- 4. Martin's Physical Pharmacy and Pharmaceutical Sciences. Lippincott Williams & Wilkins.

NSC 479: Carbon Nanoscience and its applications (4 Credits)

Pre-requisites for the Course: Understanding of basic Physics	
Course Objective: Introduction to Carbon Nanoscience and its applications	
Course outcome : On completion of the course, the students will be able to:	

Unit-I	LO1	Learn carbon molecules and their types.	
Unit-II	LO2	Learn higher order Fullerenes, their production and purification.	
Unit-III	LO3	Understand spectroscopic properties of carbon nanotubes	
Unit-IV	LO4	Learn advancement in the field of applications of carbon-based materials	
	COURSE CONTENT		

Unit I

Introduction – Carbon molecules, nature of the carbon bond, new carbon structures, discovery of C60-structure of C60 and its crystal, from a Graphene Sheet to a Nanotube, Single wall and Multi walled Nanotubes, Zigzag and Armchair Nanotubes, Nomenclature, Euler's Theorem.

Unit II

Structure of Higher Fullerenes, Growth Mechanisms; Production and Purification-Fullerene Preparation by Pyrolysis of Hydrocarbons, Partial Combustion of Hydrocarbons, Arc Discharge Methods, Production by Resistive Heating, Rational Syntheses; Physical Properties.

Unit III

Spectroscopic Properties of Carbon Nanotubes- Raman and Infrared Spectroscopy of Carbon Nanotubes, Absorption and Emission Spectroscopy of Carbon Nanotubes, ESR-Spectroscopic Properties of Carbon Nanotubes.

Unit IV

Quantum technologies and Diamontronics: Crystal structure of diamond, Impurities in diamond, Physical properties of diamond, Color centres in diamonds, Diamond synthesis routes and challenges; Natural diamonds, HPHT method, Chemical vapor deposition, Detonation nanodiamond, Synthesis of diamond films; Hot filament CVD, Microwave plasma CVD, types of diamond films; diamond; SCD, MCD, NCD and UNCD; doping in diamond; p-type doping, n-type doping, doping methods; CVD method, ion implantation Importance of doped diamond; Josephson junctions, SQUID devices, Diamontronics; Diamond UV-photodetectors, Optical applications of diamond films, Hybrid systems for next generation quantum hardware development.

Text/References

- 1. Carbon Nanotubes: Properties and Applications- Michael J. O'Connell.
- 2. Carbon Nanotechnology- Liming Dai.
- 3. Nanotubes and Nanowires- CNR Rao and A Govindaraj RCS Publishing.
- 4. Physical properties of Carbon Nanotube-R Satio.

NSC 480: Basics of Nanotechnology in Tissue Engineering - (4 Credits)

Pre-requis	Pre-requisites for the Course: Understanding of basics of biotechnology and nanomaterials			
Course O	Course Objective: To learn various aspect of tissue engineering in the context of nanotechnology			
Course ou	Course outcome : On completion of the course, the students will be able to:			
Unit-I LO1 Introduce basics concepts of tissue engineering				
Unit-II	LO2	Learn about various aspect of tissue engineering and the underlying principles		
Unit-III	LO3	Understandaboutvariousaspectsofbiomaterials: biodegradability and		
	biocompatibility biocompatibility			
Unit-IV	Unit-IV LO4 Learn about application of Nanotechnology in tissue engineering			
COURSE CONTENT				

Unit I

Introduction – Stem cells - basic principle - embryonic stem cells - Induced pluripotent stem cells. Structure-function relationships. Native matrix - Tissue Engineering and Cell-Based Therapies -Tissue Morphogenesis and Dynamics- Stem Cells and Lineages - Cell-Cell Communication.

Unit II

Primary cells vs. cell lines- Cell Isolation and Culture - ECM and Natural Scaffold Materials- Scaffold Fabrication and Tailoring. Synthetic Biomaterial Scaffolds- Graft Rejection – Immune Responses-Cell Migration- Micro technology Tools, Principles of self-assembly - Cell migration - 3D organization and angiogenesis.

Unit III

Biomaterials for tissue engineering- Biomaterials: ceramics, polymers (synthetic and natural). Biodegradable materials: synthesis and characterization, classification on the basis of origin and material properties. Biocompatibility-various factors that determines it and different studies for certifying biocompatibility.

Unit IV

Application of tissue engineering- Application in stem cell tissue engineering, cardiac cells engineering, Neural cell engineering, Cartilage, Bone, vascular cells, Skin tissue engineering, Ligament etc. Stem Cell Therapies. Nanotechnology-based approaches in the treatment of injuries to tendons and ligaments - Progress in the use of electrospinning processing techniques for fabricating nanofiber scaffolds for neural applications.

Text/References

- 1. Biomaterials and Nanotechnology for Tissue Engineering by S Sethuraman, U M Krishnan, A Subramanian, 2016, CRC Press
- 2. Nanotechnology Applications for Tissue Engineering, 1st Edition, Editors: Sabu Thomas, Yves Grohens, & Neethu Ninan. 2015, Elsevier
- 3. Nanotechnology in Tissue Engineering and Regenerative Medicine, by Ketul Popat. 2010 by CRC Press

OTHER COURSES

NSC-491 Nano Science Practicals-II (4C)

Pre-requisites for the Course: Understanding of basic Physics and Chemistry

Course Objective: Hands on experience on various techniques for synthesis and characterization of nanomaterials.

Course outcome:On completion of the course, the students will get hands on experience on synthesisofpolymericand lipid-based nanoparticles, andtheir characterization. They will also learn the electrical characterization of bulk and thin film.

COURSE CONTENT

List of experiments

- 1. Study of chemical kinetics using UV-Vis spectroscopy
- 2. Synthesis of quantum dots using chemical route and their emission properties
- 3. Synthesis of colloidal solution and demonstration of Tindal effect
- 4. Hall study for Si and Ge samples
- 4. Synthesis and characterization of lipid-based nanoparticles for drug delivery
- 5. Synthesis of polymeric nanoparticles by solvent evaporation method and characterization
- 6. Synthesis and characterization of polyaniline prepared using oxidation method

- 7. Deposition and characterization of spin coated polyaniline thin film
- 8. To understand the fundamentals of IR and Raman spectroscopy and characterize the given molecule and nanomaterials.
- 9. Synthesis and characterization of carbon dots

Text/References

1. Edelstein A S and Cammarata R C, "Nanomaterials: Synthesis, Properties and Applications", Taylor and Francis, 2012

Holistic education offered at University level (2 credits)

SEMESTER III

CORE COURSES

NSC 502: Nano fabrication and Nanotechnologies (4 Credits)

Pre-requisi	tes for the	e Course: Understanding of basic Physics		
Course Ob	jective: I	ntroduction to nano fabrication and nanotechnologies		
Course outcome : On completion of the course, the students will be able to:				
Unit-I	LO1	Learn nanofabrication processes.		
Unit-II	LO2	Learn precision engineering in VLSI technology		
Unit-III LO3 Learn nanofabrication in semiconductor industry				
Unit-IV LO4 Learn nanofabrication rules and steps of CMOS fabrication				
COURSE CONTENT				

Unit I

Nanofabrication processes: Concept of Top Down and Bottom-Up Fabrication approach, Biomediated assembly, template assisted synthesis, epitaxial growth.

Unit II

Precision Engineering in VLSI technology: Electron beam lithography (EBL), UV imprint lithography, Nanoimprint lithography, focused ion beam (FIB), pulsed laser ablation, Multilayers structures for device applications, ion beam nano structuring

Unit III

Nanofabrication in semiconductor industry: Metal Oxide Semiconductor (MOS) transistor, NMOS and PMOS transistors, Complementary Metal Oxide Semiconductor (CMOS) transistor

Unit IV

Fabrication: Design rules, clean rooms, Wafer cleaning and Gettering, Oxidation, Photoresist, Photolithography, Etching, Device isolation, N and P well formation, Gate formation,

Source/Drain formation, Contact and local interconnect formation (Metallization).

Text/References

- 1. Silicon VLSI Technology: Fundamentals, Practice, and Modeling 1st Edition by James D. Plummer, Michael Deal, Peter D. Griffin (Pearson Education).
- 2. Handbook of Nanofabrication: Editor Gary P. Wiederrecht, Elsevier publication.
- 3. Nanostructures-Fabrication and analysis: Editor: H. Nejo, Springer publication.
- 4. Principles of Lithography: Harry J. Levinson.

NSC 503: Research Methodology (4 Credits)

Pre-requisite	es for the	e Course: Understanding of basic science
Course Obj	ective: 7	To inculcate the teaching and research capabilities among the students,
developing t	he teach	ing and research aptitude as well, to develop cognitive abilities, and
comprehensi	on.	
Course outc	ome: C	on completion of the course, the students will be able to:
Unit-I	LO1	Learn research aptitude, ethics precision and application of ICT in
		research.
Unit-II	LO2	Learn data interpretation
Unit-III	LO3	Learn effective communication
Unit-IV	LO4	Understand the various statistics approaches, implement in data analysis, and learn correlation and regression analysis. Learn use of ICT tools in
		research.

COURSE CONTENT

Unit I

Research Aptitude and Ethics

Research: Meaning, Types, and Characteristics, Positivism and Post-positivistic approach to research. Methods of Research: Experimental, Descriptive, Historical, Qualitative and Quantitative methods. Steps of Research, Thesis and Article writing: Format and styles of referencing, Research ethics.

Unit II

Data Interpretation: Sources, acquisition and classification of Data.

Quantitative and Qualitative Data; Graphical representation (Bar-chart, Histograms, Pie-chart, Table-chart and Line-chart) and mapping of Data; Communication: Meaning, types and characteristics of communication, Effective communication: Verbal and Non-verbal, Inter-Cultural and group communications, Classroom communication.

Unit III

Communication Skills - Participation in group discussion: Facing an interview; presentation of scientific papers Communication: Meaning, types and characteristics of communication. Effective communication: Verbal and Non-verbal, Inter-Cultural and group communications, Classroom communication

Unit IV

Statistics and ICT for Research Purpose-Measurement scales, normal distribution, Correlation and regression analysis: types of scales, normal distribution, Application of normal probability curve, Null hypothesis, and its importance. Methods of correlation and regression analysis. Inferential

statistics: Student t-test, Analysis of variance and co-variance. Non-parametric statistics: Chisquare test, Application of ICT in research

Text/References

- 1. Research methodology: methods and techniques by C R Kothari New Delhi New Age International (P) Limited Publishers 2011Research methodology: vol.I / by Suresh C Sinha and Anil K Dhiman . by Sinha, Suresh C [Author.]. Ess Ess., 2002 New Delhi:Research methods, design, and analysis / Larry B. Christensen, R. Burke Johnson, Lisa Turner. by Johnson, Burke Allyn & Bacon, Boston: 2010
- 2. Science and ethics / Bernard E. Rollin. by Rollin, Bernard E. Cambridge University Press, Cambridge; New York : 2006
- 3. Ethics in research by Ian Gregory: London Continuum International Publishing Group 2005
- 4. Writing and presenting research / Angela Thody. by Thody, Angela. London; Thousand Oaks, Calif.: Sage Publications, 2006
- 5. Research methods: the basics / Nicholas Walliman, by Walliman, Nicholas. London; New York: Routledge, 2011
- 6. Research methodology: by Saravanavel, P.: New Delhi: Kitab mahal, 2009
- 7. Methodology of scientific research programmes: Philosophical papers vol.i / by Imre Lakatos .by Lakatos, Imre [Author.] | Worrall, John [Editor.] | Currie, Gregory [Editor.]. Delhi Cambridge University Press 2001
- 8. Library link, Central University of Gujarat: http://14.139.122.35/drupal/node/19

OPTIONAL COURSES

NSC 521 Nanomaterials in Energy Technology (4 Credits)

Pre-requisite	Pre-requisites for the Course: Understanding of basic chemistry		
v	<i>Course Objective</i> : To use the nanotechnology for generation of green and sustainable energy. To be familiar with energy storage devices such as Li-ion batteries and supercapacitors.		
		completion of the course, the students will be able to:	
Unit-I	LO1	Learn the role of nanotechnology for sustainable energy and conversion of energy	
		directly or indirectly. They will also be familiar with nanoscale catalysts used to enhance the production rate.	
Unit-II	LO2	Learn the various methods for hydrogen production. They will also acquire	
		knowledge about thermal decomposition, photochemical and photocatalysts. They will also learn about the techniques used to hydrogen storage.	
Unit-III	LO3	Get quick knowledge about the electrochemical storage devices. They will know the principle of primary, secondary, solid state, lead acid, nickel cadmium and advanced li-ion batteries. They will also know about the LEDs, catalytic reactors. and capacitor fuel cells.	
Unit-IV	LO4	Get knowledge about the nanomaterials used for data storage devices. They will learn the various parameters that can enhanced the overall storage. They will also	

learn the role of carbon materials in energy storage devices.	
---	--

COURSE CONTENT

Unit I

Introduction: Nanotechnology for sustainable energy- Energy conversion process, indirect and direct energy conversion, use of nanoscale catalysts to save energy and increase the productivity in industry

Unit II

Hydrogen Energy: Hydrogen production methods: from fossil fuels, electrolysis, thermal decomposition, photochemical, photocatalytic, hybrid; Hydrogen storage methods: metal hydrides, metallic alloy hydrides, carbon nanotubes etc.

Unit III

Electrochemical Energy Storage Systems: Batteries: Primary, Secondary, Lithium, solid-state and molten solvent batteries; Lead acid batteries; Nickel Cadmium Batteries; Advanced Batteries. Applications of batteries, light emitting diodes, catalytic reactors, capacitors fuel cells.

Unit IV

Nanomaterials in Energy Storage: Nano-electrochemical systems, nanomaterials for rechargeable batteries, nanomaterials for fuel cells, carbon material for energy storage e.g., Graphene, GO, r-GO, Fullerene and carbon nanotubes and carbon allotropes etc.

Text/References

- 1. J. Twidell and T. Weir, Renewable Energy Resources, E & F N Spon Ltd, London, (1986).
- 2. Martin A Green, Solar cells: Operating principles, technology and system applications, Prentice Hall Inc, Englewood Cliffs, NJ, USA, (1981).
- 3. H J Moller, Semiconductor for solar cells, Artech House Inc, MA, USA, (1993).
- 4. Ben G Streetman, Solis state electronic device, Prentice Hall of India Pvt Ltd., New Delhi (1995).
- 5. M.A. Kettani, Direct energy conversion, Addision Wesley Reading, (1970).
- 6. Linden, Handbook of Batteries and fuel cells, Mc Graw Hill, (1984).
- 7. Hoogers, Fuel cell technology handbook. CRC Press, (2003).
- 8. Vielstich, Handbook of fuel cells: Fuel cell technology and applications, Wiley, CRC Press, (2003).

NSC 523 Semiconductor Materials and Applications (4 Credits)

Introduc	Introduction / Pre-requisites for the Course: Understanding of basic Physics		
Course	Course Objective: Introduction to semiconductor materials and applications		
Course	outcom	e: On completion of the course, the students will be able to:	
Unit-I	LO1	Learn Energy Band Diagram and related concepts.	
Unit-II	LO2	Calculate charge carriers in Intrinsic and Extrinsic Semiconductors.	
Unit-III	LO3	Learn basics of Semiconductor junction theory and heterojunction.	
Unit- IV	LO4	Learn growth and fabrication techniques for Semiconducting Nanostructures.	

COURSE CONTENT

Unit I

Electron Theories. Effective mass concept. Density of states concept. Energy Band Diagram: Electron Energy Bands, Semiconductor Heterostructures, Lattice-matched and mismatched. heterostructures, Inorganic-organic Heterostructures. Dopant Atoms and Energy Levels, Position of Fermi Energy Level. Excitons, band-gap variations-quantum confinement.

Unit II

Charge Carriers in Semiconductors: Intrinsic and Extrinsic Semiconductors, Equilibrium Distribution of Electrons and Holes in Intrinsic and Extrinsic Semiconductors, Carrier Transport Phenomena: Carrier Drift, Carrier Diffusion, Graded Impurity Distribution, Hall Effect.

Unit III

Basics of Semiconductor junction theory. Semiconductor Electronic devices: p-n Junction, p-n Junction Diode, Metal-Semiconductor and Semiconductor Heterojunctions, rectification in junctions.

Unit IV

Growth and Fabrication Techniques for Semiconducting Nanostructures: Bulk crystal and Heterostructure growth. Applications Semiconductor nanoparticles, Concept of direct and indirect band gap semiconductors, Effect of band gap on Optical luminescence and fluorescence, porous silicon.

Text/References

- 1. Encyclopedia of Nanotechnology- Hari Singh Nalwa
- 2. Springer Handbook of Nanotechnology Bharat Bhusan
- 3. Handbook of Semiconductor Nanostructures and Nanodevices Vol 1-5- A. A. Balandin, K. L.Wang.
- 4. Nanostructures and Nanomaterials Synthesis, Properties and Applications Cao, Guozhong.
- 5. Semiconductor Semiconductor Physics and Devices Basic Principles. Tata McGraw Hill Publishing.

NSC 524 Nano Devices and Sensors (4 Credits)

Introducti	ion / Pre	-requisites for the Course: Basic knowledge of chemistry and physics	
Course C	bjective	e: To study the carbon nanotechnology, nano magnetism, and different sensing	
technique	S		
Course o	utcome:	On completion of the course, the students will be able to:	
Unit-I	LO1	Understand the applications of carbon nanotechnology in various fields	
Unit-II	LO2	Learn about various magnetic materials and devices.	
Unit-III	Unit-III LO3 Understand the basics of gas sensors		
Unit-IV	LO4	Learn the applications of different sensing techniques like electrochemical, gas	
	sensing etc.		
		COURSE CONTENT	

Unit I

Carbon Nanotechnology: Introduction to carbon nanotubes and their applications in various industries, supercapacitors, hydrogen storage; Nanomaterials for solar power: Solar energy materials, Solar energy devices, silicon solar technology for clean energy, Light Emitting Diodes, LED displays.

Unit II

Basics of Nano magnetism, Spintronics technology and the challenges, Modern magnetic materials: principles and applications, Electron and nuclear spin devices.

Unit III

Introduction to Gas sensors; Characteristics of Gas sensors; Types of Gas sensors; Solid State Gas sensors: Chemiresistive Gas sensors (Semiconducting Metal Oxide based sensors, Carbon Nano Tube based nano sensors).

Unit IV

Miscellaneous applications: Microfluidics and Microsystems, Micro-electromechanical systems,

ChemFET (NEMs and MEMS based sensors), Optic Gas sensors, Spectroscopic Gas sensors, Chemical Sensors: Electrochemical Gas Sensors.

Text/References

- 1. Nanotubes and Nanowires- CNR Rao and A Govindaraj RCS Publishing.
- 2. Novel Nanocrystalline Alloys and Magnetic Nanomaterials- Brian Cantor
- 3. Martin A Green, Solar cells: Operating principles, technology and system applications, PrenticeHall Inc, Englewood Cliffs, NJ, USA, (1981).
- 4. H J Moller, Semiconductor for solar cells, Artech House Inc, MA, USA, (1993).
- 5. Nanosensors: Physical, Chemical, and Biological by Vinod Kumar Khanna, Publisher: CRC Press.

NSC 525 Environmental Nanotechnology (4 Credits)

Pre-requis	Pre-requisites for the Course: Fundamental knowledge of biology and environment science			
Course O	Course Objective: To learn various aspects of nanomaterials used for environmental application and			
the method	the methodologies for assessing its impact			
Course outcome : On completion of the course, the students will be able to:				
Unit-I	LO1	Understand environmental impacts of nanomaterials		
Unit-II	LO2	Know about the environmental applications of nanomaterials		
Unit-III	Unit-III LO3 Introduce concept of waste management			
Unit-IV LO4		Learnaboutdifferentanalyticalmethodologiesforstudyingimpactof		
UIIIt-I V	LO4	nanomaterials in environment		

COURSE CONTENT

Unit I

Introduction: Overview of physical, chemical and biological processes concerning the environment; types, transport and transformation processes of contaminants in air, water and soil; effects of contaminants on environment. Environmental impacts of nanomaterials - Exposure and risk assessment, Dose-response, mechanisms of toxicity; ecotoxicological impacts of nanomaterials.

Unit II

Environmental applications of nanomaterials: Mechanism for remediation of aqueous contaminants, photocatalyst; membranes incorporating nanomaterials, transport processes in membrane technology; nanomaterial-based adsorbents for water and wastewater treatment – adsorption at metal oxide surfaces, hybrid adsorbents; case studies. Hierarchical self-assembled nanostructures and nanomaterials for adsorption of heavy metals.

Unit III

Waste Management: Sustainability and global conditions - Material and solid waste management, Energy management -chemical waste management and green chemistry, Climate change and air emissions management, supply water and wastewater management.

Unit IV

Analytical methodologies for studying impact of nanomaterials in environment – Atomic absorption spectrometry, inductively coupled plasma spectrometry, chromatography, thermal methods, hyphenated techniques. of nanotechnology-based systems for gene delivery, non-viral vectors, formulation strategies, applications in delivery of genes for different diseases.

Text/References

- 1. Wiesner, M.R., and Bottero, J.Y. (Ed.) "Environmental Nanotechnology: Applications and Impacts of Nanomaterials" McGraw-Hill, New York. 2007
- 2. Diallo, M., Duncan, J., Savage, N., Street, A., and Sustich, R. (Eds). "Nanotechnology Applications for Clean Water" William Andrew. 2008
- 3. Lead J., and Smith, E. "Environmental and Human Health Impacts of Nanotechnology" John Wiley & Sons. 2009
- 4. Skoog, D.A., Holler, F.J., and Crouch S.R. "Instrumental Analysis" Clenage Learning India Private Limited, New Delhi. 2007
- 5. Masters, G.M. and Ela, W.P. "Introduction to Environmental Engineering and Science" Prentice Hall. 2007

NSC 526: Basics of Nanomedicines (4 Credits)

Introducti	on / Pre-	-requisites for the Course: Basic knowledge of nanoparticles and biology		
Course O	Course Objective: To learn basics of nanomedicines and their preclinical and clinical studies			
Course outcome : On completion of the course, the students will be able to:				
Unit-I	LO1	Learn basic concept, rational for designing and materials used in nanomedicines		
Unit-II	LO2	Introduce basics of cellular nanoparticle interaction and the mechanism involved		
Unit-III	Unit-III LO3 Learn about basics concept of nanotechnology in imaging and diagnostic			
Unit-IV	LO4	Know about preclinical and clinical studies of nanomedicines for translation		
COURSE CONTENT				

Unit I

Introduction: Concept of nanomedicines, Rationale for designing of nanomedicines, Materials for preparation of nanomedicines, Different structures of nanomedicines.

Unit II

Cellular nanoparticle interaction and receptor-mediated endocytosis: Transport of nanoparticles across the biological barriers, parameters affecting binding and uptake of nanoparticles-size, shape, surface charge, protein corona, surface modification. Different mechanisms of receptor-mediated endocytosis.

Unit III

Nanotechnology in imaging and diagnosis: Basic concept of nanotechnology in imaging, Different nanomaterials for imaging and diagnosis, Applications of nanomaterials in MRI, computed tomography and image guided disease treatment.

Unit IV

Clinical translation of nanomedicines: Preclinical and clinical considerations of nanomedicines, Overview of current clinical nanomedicines, Regulations of nanomedicines for human health.

Text/References

1. Nanotechnology in Modern Medical Imaging and Interventions. Xiaoming Yang. Nova Science Publisher. 2. The Clinical Nanomedicine Handbook. By Sara Brenner. CRC Press 3. Nanomedicines and Nanoproducts: Applications, Disposition, and Toxicology in the Human Body. Eiki Igarashi. 4. Novel Drug Delivery Systems. by Yie W. Chien 5. Introduction to Novel Drug Delivery Systems By N.K. Jain

NSC 527: Nanocarriers for Drug and Gene Delivery (4 Credits)

Introduction	Introduction / Pre-requisites for the Course: Basic understanding of biology and nanocarriers		
Course O	Course Objective: Introduce basics of nanocarriers for drug/gene delivery and associated challenges		
Course outcome : On completion of the course, the students will be able to:			
Unit-I	LO1	Learn basics of drug delivery systems and drug targeting strategies	
Unit-II	LO2	Learn about polymeric nanocarriers: types, synthesis, and application	
Unit-III	Unit-III LO3 Learn about dendrimer: types, synthesis, and application		
Unit-IV LC	LO4	Learn about application of nanotechnology for gene delivery and the associated	
Omt-1 V	LU4	challenges	

COURSE CONTENT

Unit I

Introduction about drug delivery systems: Basics of drug delivery, Types-polymer, lipid, metal-based drug delivery system and miscellaneous. Drug targeting strategies for site specific drug delivery-passive and active targeting, time and rate-controlled drug delivery.

Unit II

Polymer based drug nanocarriers: Classification and types of polymeric nanocarriers, Different methods of polymeric nanocarrier preparation: Precipitation, Emulsion diffusion/Solvent evaporation, Salting out etc. Various applications of polymeric nanocarriers: Theragnostic, Imaging etc..

Unit III

Introduction of different dendritic nanostructures, chemical structures, types of dendrimers, methods of preparation-convergent and divergent, physicochemical properties of dendrimers, interaction between drug molecules and dendrimers, applications of dendrimers

Unit IV

Challenges in gene delivery, basic concept, design of nanotechnology-based systems for gene delivery, non-viral vectors, formulation strategies, applications in delivery of genes for different diseases.

Text/References

1. Application of Nanotechnology in Drug Delivery: Edited by Ali Demir Sezer, ISBN 978-953-51-1628-8, 552 pages, Publisher: InTech, 2. Introduction to Novel Drug Delivery Systems By N.K. Jain 3. Understanding Nanomedicine: An Introductory Textbook by Rob Burgess. 2012 CRC Press 4. Nanomedicine for Drug Delivery and Therapeutics, Editor(s): Ajay Kumar Mishra, 2013, Wiley 5. Medical Nanotechnology and Nanomedicine by Harry F. Tibbals. 2010 by CRC Press Introduction to Nanomedicine and Nanobioengineering, by Paras N. Prasad. 2012, Wiley.

NSC 528: Nanophotonics (4C)

Introduction / Pre-requisites for the Course: Basic understanding of physics and nanoscience

Course Objective: The basics of plasmonics, nanophotonics, metamaterials, nanophotonics for biotechnology, as well as their applications, will be known to the students. In-depth discussions on the physics and optics of various nanophotonic structures will be presented. Students can use the knowledge they learn in this course to advance their research and advance existing technologies.

Course outcome : On completion of the course, the students will be able to:						
Unit-I	LO1	apply Maxwell's equations to solve problem, understanding the basics of				
		electrostatics and magnetostatics to solve problems electric field and magnetic fields , respectively.				
Unit-II	LO2	gain a thorough knowledge of nanophotonics, particularly the interaction of light and matter at the nanoscale.				
Unit-III	LO3	comprehend the behavior of light within confined structures. This understanding is essential for creating and regulating light propagation in nanoscale devices.				
Unit-IV	LO4 obtain a fundamental knowledge of the experimental techniques utilized in nanophotonics, such as micro and nanofabrication. Understanding the use of nanophotonics in biology and other materials science applications					
COURSE CONTENT						

Unit I

Scalar and vector analysis, Electrostatics, Electric fields in matter, Magnetostatics, Magnetic fields in matter, Electrodynamics, Maxwell's equations, Light-matter interactions

Unit II

Basics of nanophotonics, Modern optical science and technology, Diffraction limit, Plasmonics, Local field enhancements and its various implementations, Metamaterials.

Unit III

Near field optics, near field optical probes, Photonics crystals and its physical properties, Silicon, graphene and diamond photonics, Lasers and production of single photon.

Unit IV

Micro and nanofabrication, Nanocomposites as photonic medium, Nanophotonics for biotechnology and nanomedicine, Nanophotonics for industrial applications.

Text/References

- 1.Introduction to Electrodynamics, David J Griffiths, 4th Edition, 2015.
- 2. Nanophotonics, P. N. Prasad, John Wiley & Sons, Inc, 2004.
- 3. Nanophotonics, A. McGurn, Springer Series in Optical Sciences, 213, Springer 2018.
- 4.J. W. Haus, Fundamentals and Applications of Nanophotonics, Woodhead Publishing, 2016
- 5.S. V. Gaponenko, Introduction to Nanophotonics, Cambridge University Press, 2010.

OTHER COURSES

NSC 541 Seminar (2 Credits)

Pre-requisites for the Course: Master's degree in Science and basic knowledge of computer

Course Objective To train students in reviewing of literature, analyzing data and presentations.

Course outcome: On completion of the course, the students will be able to understand the literature, analyze data and present effectively.

Multidisciplinary course offered by the other Schools (2 Credits)

SEMESTER IV

NSC 591 Dissertation & Viva (16 C)

Pre-requisites for the Course: Basic knowledge

of nanoscience and nanotechnology

Course Objective: To provide hands-on-experience on synthesis and applications of nanomaterials for solving the problems related to energy, environment, health, agriculture etc.

Course outcome: On completion of the course, the students will be able to design research proposal, perform experiments, analyze and interpret data, and write and present research outcomes.

Course content: Students are required to carry out a research project of 6 months duration related to Nanoscience/Nanotechnology. Each student will be assigned with a supervisor from among the panel of teachers.

NSC 592 Term paper, Project Proposal and Defense (4 Credits)

Pre-requisites for the Course: Basic knowledge of nanoscience, nanotechnology, and computer

Course Objective To train students in reviewing of literature, analyzing data and presentations.

Course outcome: On completion of the course, the students will be able to

- 1. understand the literature, analyze data and present effectively.
- 2. understand the literature, design projects on innovative ideas and present them effectively.

Course content: Students would be required to write a comprehensive review on a contemporary topic. They would be required to formulate a proposal on the basis of the background literature collected and finally defend the proposal.