CENTRAL UNIVERSITY OF GUJARAT

SCHEME OF EXAMINATION AND COURSES OF STUDY

Master of Science (M. Sc.) Chemical Sciences

CENTRAL UNIVERSITY OF GUJARAT GANDHINAGAR, SECTOR-30 GUJARAT-382030 INDIA

Image: SemesterCHE401Inorganic Chemistry-I3ICHE402Quantum Mechanics and Chemical3Dynamics-IJCHE403Basics of Organic Chemistry-I3CHE404Basics in Chemical Analysis-I3CHE441Laboratory Techniques in Physical6CHE442Laboratory Techniques in Organic6CHE442Laboratory Techniques in Organic6	3 3 3 3 3 3 3 3
ICHE402Quantum Mechanics and Chemical3Dynamics-I3CHE403Basics of Organic Chemistry-I3CHE404Basics in Chemical Analysis-I3CHE411Laboratory Techniques in Physical6CHE442Laboratory Techniques in Organic6	3 3 3 3
Dynamics-IDynamics-ICHE403Basics of Organic Chemistry-I3CHE404Basics in Chemical Analysis-I3CHE441Laboratory Techniques in Physical6CHE442Laboratory Techniques in Organic6	3 3 3
CHE403Basics of Organic Chemistry-I3CHE404Basics in Chemical Analysis-I3CHE401Laboratory Techniques in Physical6CHE441Laboratory Techniques in Organic6CHE442Laboratory Techniques in Organic6	3
CHE404 Basics in Chemical Analysis-I 3 CHE401 Laboratory Techniques in Physical 6 CHE441 Chemistry – I 6 CHE442 Laboratory Techniques in Organic 6	3
CHE441 Laboratory Techniques in Physical 6 Chemistry – I CHE442 Laboratory Techniques in Organic 6	3
Chemistry – ICHE442LaboratoryCHE442Chemistry – I	
CHE442 Laboratory Techniques in Organic 6	3
	3
Chemistry –I	
Semester CHE451 Group Theory and Advanced Inorganic 3	3
II Chemistry-II	
CHE452 Thermodynamics and Electrochemistry- 3	3
II	
CHE453 Organic Reaction Mechanisms-II 3	3
CHE454 Spectroscopic Methods-II 3	3
CHE491 Laboratory Techniques in Inorganic 6	3
Chemistry –II	
CHE492 Laboratory Techniques in Organic 6	3
Chemistry –II	
Semester CHE501 Advanced Inorganic Chemistry-III 3	3
III CHE502 Applied Physical Chemistry-III 3	3
CHE503 Photochemistry and Pericyclic 3	3
Reactions-III	
CHE504 Separation Techniques-III 3	3
CHE541 Laboratory Techniques in Physical 6	3
Chemistry –III	
CHE542 Laboratory Techniques in Inorganic 6	3
Chemistry –III	
Semester CHE551 Advanced Inorganic and Nanochemistry 3	3
IV /Inorganic Spectral Techniques	
Elective-IV	

CHE552	Polymer Chemistry/ Molecular Bio- physical Chemistry, Elective-IV	3	3
CHE553	Advanced Organic Chemistry/ Organic Synthesis, Elective-IV	3	3
CHE554	Advanced Analytical Methods/ Medicinal Chemistry, Elective-IV	3	3
CHE591	Project		6
Total Cre	edits	1	72

Subject	M. Sc. Chemical Sciences	No. of
Code	First Semester	Credits
CHE401	Inorganic Chemistry-I	3
	Unit-I:	
	Molecular Symmetry	
	Symmetry elements and operations, symmetry groups and molecular	
	point groups.	
	Molecular Geometry	
	VSEPR, ligand close packing model, Walsh diagrams, $d\pi$ -p π bonds,	
	Bent's rule.	
	Coordination Chemistry	
	Bonding theories, stereochemistry and structure of coordination	
	compounds, Jahn–Teller theorem.	
	Unit-II:	
	Electronic Spectra of Transition Metal Complexes	
	Spectroscopic ground states; Orgel energy level and Tanabe-Sugano	
	diagrams; calculation of calculation of ligand-field parameters,	
	charge transfer spectra; symmetry based concepts of Orgel energy	
	level diagrams, Spectroscopic method for assignment of absolute	
	configuration of optically active metal chelates.	
	Magnetic Properties of Transition Metal Complexes	
	Microstates, multiplet, multiplet width, hole formalism, zero-field	
	splitting, spin-orbit coupling, quenching of orbital contribution, high	
	spin/low spin equilibrium, anomalous magnetic moments, magnetic	
	exchange coupling and spin cross over.	
	Unit-III:	
	Inorganic Polymers	
	Classification, types of inorganic polymerization, comparison with	
	organic polymers, boron-oxygen, boron-nitrogen, phosphorus-	
	nitrogen, sulfur-nitrogen, sulfur-nitrogen-fluorine compounds,	
	silicones.	

	Structure of solids	
	Structure of compounds of AX, AX ₂ , AmX ₂ , ABX ₃ , spinels and	
	inverse spinel structures.	
	Nuclear Chemistry	
	Nuclear reactions, fission and fusion, radio-analytical techniques and activation analysis.	
	SUGGESTED BOOKS:	
	1. Inorganic Chemistry Principles of Structure and Reactivity, J. E.	
	Huheey, E. A. Keiter, R. A. Keiter, 4 th ed., Pearson Education India, 2006.	
	2. Inorganic Chemistry, Gary L. Miessler, Paul J. Fischer, Donald	
	A. Tarr, 5 th ed., Upper Saddle River, N.J: Pearson Education, 2014.	
	3. Molecular Symmetry and Group Theory, Robert L. Carter,	
	Wiley, 2008.	
	4. Modern Nuclear Chemistry, Walter D. Loveland, David J.	
	Morrissey, Glenn T. Seaborg, Wiley, 2017.	
CHE402	Quantum Mechanics and Chemical Dynamics-I	3
	Unit-I:	
	Quantum Mechanics	
	Failures of classical mechanics, Introduction to quantum mechanics,	
	Schrödinger wave equation: time-independent and time dependent,	
	Application to exactly solvable problems: translational motion,	
	Application to exactly solvable problems: translational motion,	
	Application to exactly solvable problems: translational motion, vibrational motion, rotatory motion, tunnelling, wave functions and	
	Application to exactly solvable problems: translational motion, vibrational motion, rotatory motion, tunnelling, wave functions and energies of hydrogen-like systems orbital-radial functions, radial	
	Application to exactly solvable problems: translational motion, vibrational motion, rotatory motion, tunnelling, wave functions and energies of hydrogen-like systems orbital-radial functions, radial distribution functions, angular functions and their plots, Stern-	
	Application to exactly solvable problems: translational motion, vibrational motion, rotatory motion, tunnelling, wave functions and energies of hydrogen-like systems orbital-radial functions, radial distribution functions, angular functions and their plots, Stern-Gerlach experiment.	
	Application to exactly solvable problems: translational motion, vibrational motion, rotatory motion, tunnelling, wave functions and energies of hydrogen-like systems orbital-radial functions, radial distribution functions, angular functions and their plots, Stern- Gerlach experiment. Unit-II:	

	Unit-I:	
CHE403	Basics of Organic Chemistry-I	3
	6 th ed. 1997	
	7. Physical chemistry of surfaces A. W. Adamson and A. P. Gast.	
	Rajaram and J. C. Kuriakose, Mc Millan, 2011.	
	6. Kinetics and Mechanism of Chemical Transformations- J.	
	Wiley, New York, 1961.	
	5. Kinetics and Mechanism – A. A. Frost and R. G. Pearson, John-	
	rev. ed., 2010.	
	4. Quantum Chemistry, R. K. Prasad, New Age International, 4 th	
	ed., 2008.	
	3. Quantum Chemistry, I. N. Levine, Prentice Hall, New Jersey, 6 th	
	McQuarrie and John D. Simon, Viva, New Delhi, 2001.	
	2. Physical Chemistry: A Molecular Approach, Donald A.	
	2011.	
	1. Physical Chemistry, P. W. Atkins, Julio de Paula, ELBS, 9 th ed.,	
	SUGGESTED BOOKS:	
	autocatalyzed reactions and examples	
	Concepts of catalysis, acid-base, enzyme catalysed, and	
	Kinetics of homogeneous catalysis	
	of surfaces.	
	surface film on liquids (electro-kinetic phenomena), catalytic activity	
	(Laplace equation), vapour pressure of droplets (Kelvin equation),	
	tension and surface energy, pressure difference across curved surface	
	Types of adsorption isotherms, estimation of surface area, surface	
	Surface chemistry	
	Unit-III:	
	and examples	
	state kinetics, chain reactions -photochemical and thermal reactions	
	reaction rates, reaction between ions in solutions -Concept of steady	
	coefficient and its evaluation. Thermodynamical formulation of	

Basic concepts of organic chemistry

Review of basic concepts in organic chemistry: bonding, hybridization, inductive effect, resonance effect, hyperconjugation, tautomerism and steric effect.

The concept of aromaticity: delocalized chemical bonding, conjugation, cross conjugation, aromaticity, Huckel's rule, examples of neutral and charged aromatic systems (including annulenes, azulene, tropone and tropolone, benzenoids, mesoionic compounds). Anti and homo-aromatic systems. Alternant and non-alternant hydrocarbons, energy levels in odd and even-alternant hydrocarbons, benzyl cation, benzyl free-radical and benzyl carbanion.

Unit-II:

Reaction Mechanisms

Generation, structure, stability, and reactivity of reaction intermediates: carbocations, carbanions, carbon free radicals, carbenes, and nitrenes.

Classification of reactions and mechanisms; thermodynamic and kinetic controlled reactions, Hammond postulate, Curtin-Hammett principle. Potential energy diagrams, transition states, and intermediates. Methods of determining mechanisms: based on the structure of products, determination of the presence of intermediates, isotopic labeling, isotope effects, stereochemical evidence.

Acids and bases: hard and soft acids and bases, effect of structure on the strengths of acids and bases.

Heterocyclic compounds

Nomenclature of heterocyclic compounds. Structure, reactivity, synthesis and reactions of pyrazole, imidazole, oxazole, isoxazole, thiazole, isothiazole, pyrimidine, purine and indole.

Unit-III:

Stereochemistry

Projection formula and interconversion of projection formulas. Elements of symmetry, concepts of chirality and molecular

	r	
	asymmetry, chirality in compounds without stereogenic center.	
	Optical isomerism: D-L conventions. CIP rules, R-S and M-P	
	conventions, threo and erythro nomenclature. Geometrical isomers:	
	E and Z nomenclature.	
	Homotopic, enantiotopic and diastereotopic atoms, groups and faces.	
	Conformational analysis of 5, and 6 membered cycloalkanes	
	Nomenclature and conformations of fused rings and bridged ring	
	systems. ORD, CD, and cotton effect	
	SUCCESTED BOOKS.	
	SUGGESTED BOOKS:	
	1. Advanced Organic Chemistry-Reactions, Mechanism, and	
	Structure, Jerry March, ed.John Wiley 2008.	
	2. Stereochemistry of Organic Compounds, D. Nasipuri, 3 rd ed.,	
	New-Age International, 2011.	
	3. Organic chemistry, J. Clayden, N. Greeves, S. Warren, P.	
	Wothers, Oxford University Press, 2004.	
	4. Stereochemistry of Organic Compounds, S. H Wilen and E. L	
	Eliel, Wiley, 2008.	
	5. Basic stereochemistry of organic molecules, S. S. Gupta, Oxford	
	University Press, 2014.	
	6. Stereochemistry of Organic Compounds, D. Nasipuri, 3 rd ed.,	
	New-Age International, 2011.	
CHE404	Basics in Chemical Analysis-I	3
	Unit-I:	
	Data handling and statistical methods	
	Accuracy and precision, error and types of error, significant figures,	
	rounding off, standard deviation, confidence limits,	
	tests of significance, rejection of results, least squares, correlation	
	coefficient.	
	Acid – Base Titrations	
	Basic principles, titration curves for mono functional acids and	
L		ıl

bases, pH calculations, titration curve for diprotic system, theory of indicators.

Redox Titrations

Equilibrium constants for redox reactions- electrode potentials in equilibrium systems; calculation of equilibrium constants; redox titration curves- formal redox potentials; derivation of titration curves; redox indicators; structural aspect of redox indicators; specific and nonspecific indicators; choice of indicator. Sample preparation- pre-reduction and pre-oxidation.

Unit-II:

Complexometric titrations

Organic complexing agents; amino carboxylic acid titration; EDTA; acidic properties of EDTA; EDTA complexes with metal ions; equilibrium calculations involving EDTA in solution; condition of formation constants; EDTA titration curves; effect of other complexing agents on EDTA; indicators for EDTA titrations; theory of common indicators; titration methods using EDTA- direct titration, back titration and displacement titration; indirect determinations; titration of mixtures; selectivity, masking and damasking agents; applications of EDTA titrations- hardness of water.

Precipitation titrations

Solubility product. Theoretical principles: titration curves, End point detection: Volhard and Fajans titration.

Unit III

Karl-Fischer titrations

Titration method and application

Gravimetric analysis

Introduction; properties of precipitates and precipitating reagents; completeness of precipitates; super saturation and precipitate formation; particle size and filterability of precipitates; colloidal

	precipitates; crystalline precipitates; purity of the precipitate; co-	
	precipitation, post precipitation; conditions for precipitation;	
	fractional precipitation; precipitation from homogenous solution;	
	washing of precipitates; drying and ignition of precipitates;	
	calculation of results from gravimetric data; applications.	
	SUGGESTED BOOKS:	
	1. Vogel's Text Book of Quantitative Chemical Analysis; J.	
	Mendham, J.R. C Denney, J.D. Barnes M. Thomas,	
	B. Sivasankar, B. 6 th Edn.; 2009	
	2. Analytical Chemistry; G. D. Christian, 5 th Edn, John Wiley and	
	Sons, NY.	
	3. Fundamentals of analytical chemistry 9 th Edn.; Douglas A.	
	Skoog, Donald M. West, F. James Holler, Stanley R. Crouch,	
	publisher Mary Finch.	
CHE441	Laboratory Techniques in Physical Chemistry – I	3
CHE441	Laboratory Techniques in Physical Chemistry – I I. Adsorption	3
CHE441		3
CHE441	I. Adsorption	3
CHE441	I. Adsorption 1. Verification of Freundlich and Langmuir adsorption isotherm:	3
CHE441	 I. Adsorption Verification of Freundlich and Langmuir adsorption isotherm: charcoal-acetic acid or charcoal-oxalic acid system. 	3
CHE441	 I. Adsorption Verification of Freundlich and Langmuir adsorption isotherm: charcoal-acetic acid or charcoal-oxalic acid system. Determination of the concentration of the given acid using the 	3
CHE441	 I. Adsorption Verification of Freundlich and Langmuir adsorption isotherm: charcoal-acetic acid or charcoal-oxalic acid system. Determination of the concentration of the given acid using the isotherms. 	3
CHE441	 I. Adsorption Verification of Freundlich and Langmuir adsorption isotherm: charcoal-acetic acid or charcoal-oxalic acid system. Determination of the concentration of the given acid using the isotherms. II. Phase diagrams 	3
CHE441	 I. Adsorption Verification of Freundlich and Langmuir adsorption isotherm: charcoal-acetic acid or charcoal-oxalic acid system. Determination of the concentration of the given acid using the isotherms. II. Phase diagrams Construction of phase diagrams of simple eutectics. 	3
CHE441	 I. Adsorption Verification of Freundlich and Langmuir adsorption isotherm: charcoal-acetic acid or charcoal-oxalic acid system. Determination of the concentration of the given acid using the isotherms. II. Phase diagrams Construction of phase diagrams of simple eutectics. Construction of phase diagram of compounds with congruent 	3
CHE441	 I. Adsorption Verification of Freundlich and Langmuir adsorption isotherm: charcoal-acetic acid or charcoal-oxalic acid system. Determination of the concentration of the given acid using the isotherms. II. Phase diagrams Construction of phase diagrams of simple eutectics. Construction of phase diagram of compounds with congruent melting point: diphenyl amine-benzophenone system. 	3
CHE441	 I. Adsorption Verification of Freundlich and Langmuir adsorption isotherm: charcoal-acetic acid or charcoal-oxalic acid system. Determination of the concentration of the given acid using the isotherms. II. Phase diagrams Construction of phase diagrams of simple eutectics. Construction of phase diagram of compounds with congruent melting point: diphenyl amine-benzophenone system. Effect of (KCl/succinic acid) on miscibility temperature. 	3
CHE441	 I. Adsorption Verification of Freundlich and Langmuir adsorption isotherm: charcoal-acetic acid or charcoal-oxalic acid system. Determination of the concentration of the given acid using the isotherms. II. Phase diagrams Construction of phase diagrams of simple eutectics. Construction of phase diagram of compounds with congruent melting point: diphenyl amine-benzophenone system. Effect of (KCl/succinic acid) on miscibility temperature. Construction of phase diagrams of three component systems with 	3
CHE441	 I. Adsorption Verification of Freundlich and Langmuir adsorption isotherm: charcoal-acetic acid or charcoal-oxalic acid system. Determination of the concentration of the given acid using the isotherms. II. Phase diagrams Construction of phase diagrams of simple eutectics. Construction of phase diagram of compounds with congruent melting point: diphenyl amine-benzophenone system. Effect of (KCl/succinic acid) on miscibility temperature. Construction of phase diagrams of three component systems with one pair of partially miscible liquids. 	3
CHE441	 I. Adsorption Verification of Freundlich and Langmuir adsorption isotherm: charcoal-acetic acid or charcoal-oxalic acid system. Determination of the concentration of the given acid using the isotherms. II. Phase diagrams Construction of phase diagrams of simple eutectics. Construction of phase diagram of compounds with congruent melting point: diphenyl amine-benzophenone system. Effect of (KCl/succinic acid) on miscibility temperature. Construction of phase diagrams of three component systems with one pair of partially miscible liquids. 	3

		viscosity data.	
	3	Determination of the molecular weight of a polymer.	
		urface tension	
		Determination of the surface tension of a liquid by Survismeter.	
		Determination of Parachor values.	
		Determination of the composition of two liquids by surface	
	0.	tension measurements using Survismeter.	
	4.	Determination of interfacial tension of two immiscible liquids	
		with Survismeter.	
	V. Ch	emical Kinetics	
		Kinetics of Ester Hydrolysis (acid catalyzed)-Determination of	
		the rate constant.	
	2.	Kinetics of Ester Hydrolysis (base catalyzed)-Determination of	
		order of the reaction	
	3.	Kinetics of reaction between K ₂ S ₂ O ₈ and KI. Influence of ionic	
		strength on the rate constant of the reaction between $K_2S_2O_8$ and	
		KI	
	SUGG	GESTED BOOKS:	
	1.	Practical Physical Chemistry A. Finlay and J. A.	
		Kitchener, Longman.	
	2.	Experimental Physical Chemistry, F. Daniels and J. H.	
		Mathews, Longman.	
	3.	Practical Physical Chemistry A. M. James, Churchil. 1967	
	4.	Experimental Physical Chemistry D. P. Shoemaker and C. W.	
		Garland, McGraw-Hill.	
CHE442		Laboratory Techniques in Organic Chemistry –I	3
	1. Org	anic synthetic techniques (purification)	
	a. Si	mple distillation: Ethanol-water mixture using water condenser,	
	nit	robenzene and aniline using air condenser.	
	b. Ste	eam distillation: Naphthalene from its suspension in water or	
	Cl	ove oil from cloves or separation of o-and p- nitrophenols.	
	c. Cr	ystallisation: Concept of induction of crystallization	

i. Crystallisation of phthalic acid from hot water using fluted
filter paper and stemless funnel.
ii. Acetanilide from boiling water or
naphthalene from ethanol (any one).
iii. Decolorisation and crystallization of brown sugar (sucrose) with
animal charcoal using gravity filtration.
d. Sublimation: camphor and succinic acid
2. Organic Synthesis
a. Aliphatic electrophilic substitution : Preparation of iodoform from
ethanol & acetone.
b. Oxidation: i) Benzoic acid from toluene ii) Cyclohexanone from
cyclohexanol iii) Borneol to camphor using jones reagent (any one)
c. Reduction : p-nitrophenyl methylcarbinol from p-
nitro acetophenone by $NaBH_4$ and purification of the product
through distillation under reduced pressure.
d. Bromination of an alcohol using CBr ₄ / triphenylphosphine.
e. Grignard reaction : Triphenylmethanol from benzoic acid ester or
benzophenone.
f. Aldol condensation: Dibenzal acetone from Benzaldehyde
g. Acetoacetic ester condensation: Preparation of ethyl-n-butyl
acetoacetate.
h. Cannizzaro reaction using 4-chlorobenzaldehyde as substrate.
i. Friedel Crafts reaction: using toluene and succinic anhydride.
j. Solventfree preparation of coumarin by the Knoevenagel
condensation under MW irradiation.
SUGGESTED BOOKS:
1. Experiments and Techniques in Organic Chemistry, D. Pasto, C.
Johnson and M. Miller, Prentice Hall.
2. Organic Experiments, K.L.Williamson, D. C. Heath.
 Experimental Organic Chemistry, Vol I & II,

	3. Vogel's Textbook of Practical Organic Chemistry, A. R. Tatchell,5 th	
	Ed., John Wiley. 1989	
	M. Sc. Chemical Sciences	
	Second Semester	
CHE451	Group Theory and Advance Inorganic Chemistry-II	3
	Unit-I:	
	Group Theory	
	Classification of Groups; Matrix representation of symmetry	
	elements and point groups, matrices of C2v, C3v point groups,	
	transformation matrices; structure of character tables, Reducible	
	representations, determination of symmetry species for translations	
	and rotations.	
	Applications of Group Theory	
	Vibrational Spectroscopy, Crystal Field Theory, MOT and formation	
	of hybrid orbitals in different covalent molecules.	
	Unit-II:	
	Chemistry of inorganic rings, cages and metal clusters	
	Higher boranes, carboranes, metalloboranes and metallocarboranes,	
	compounds with metal-metal multiple bonds, metal carbonyls, and	
	halide clusters.	
	Inner transition elements	
	Spectral and magnetic properties, redox chemistry, analytical	
	applications.	
	Unit III:	
	Synthesis, Structure and Bonding in Organometallic Compounds	
	Introduction, classification, nomenclature, valence electron count,	
	Ligands in organometallic chemistry; carbonyls, nitrosyls, hydride	
	and dihydrogen, phosphine, ethylene and related ligands,	
	cyclopentadiene and related ligands, alkyl, aryl, carbenes, carbynes,	
	carbidos.	
	SUGGESTED BOOKS:	

3
3

	Unit-III:	
	Electrochemistry	
	Conductance, electrolytic, specific, equivalent and molar conductance.	
	Ionic mobility; determination and calculation, Transport number and	
	determination, Kohlrausch's law and application, molar ionic	
	conductance and ionic mobility, applications of conductance	
	measurements.	
	SUGGESTED BOOKS:	
	1. Thermodynamics J. Rajaram and J. C. Kuriacose, East-West	
	Press, 3 rd ed.,	
	2. Modern Electrochemistry Vol-1 and 2 J. O. M Bockris and A. K.	
	N. Reddy, Plenum, New York 1978.	
	3. Text book of Physical Chemistry, Samuel Glastone, 2 nd ed., Mac	
	Millan India Ltd. (1991)	
CHE453	Organic Reaction Mechanisms-II	3
	Unit-I:	
	Nucleophilic substitution reactions	
	Revision of different nucleophilic substitution reaction $S_N{}^1$, $S_N{}^2$, $S_N{}^i$	
	etc. Neighbouring group participation with reference to classical and	
	non-classical carbocation.	
	Electrophilic substitution reactions	
	S_E^2 , S_E^1 and S_E^i reactions.	
	Unit-II:	
	Aromatic Substitution Reactions	
	Electrophilic substitution reactions: The arenium ion mechanism;	
	Nucleophilic substitution reactions: The S_N^{Ar} , S_N^1 , benzyne and S_{RN}^1	
	mechanisms.	
		1
	Reactivity	

nucleophile. Goldberg reaction, Bucherer reaction, Schiemann reaction, Von Richter reaction, Sommelet-Hauser and Smiles rearrangements.

Addition Reactions

Addition to carbon-carbon multiple bonds: mechanistic and stereochemical aspects of addition reactions involving electrophiles, nucleophiles and free radicals. Regio, stereo and chemoselectivities. Orientation and reactivity. Mechanism of metal hydride reduction (NaH, LiH, LiAlH₄, NaBH₄) of saturated and unsaturated carbonyl compounds, acids, esters and nitriles. Addition of Grignard reagents and organolithium reagents to carbonyl compounds and unsaturated carbonyl compounds.

Unit-III:

Elimination Reactions

The E^2 , E^1 and E^1cB mechanisms and their spectrum. E^2C and E^2H mechanisms. Orientation of the double bond.

Rearrangements

Hoffmann, Curtius, Lossen and Schmidt, Beckmann,

Wagner-Meerwein, Pinacol-Pinacolone, Fries, Wolff, Benzilbenzilic acid, Arndt-Eistert reaction, Tiffeneau-Demjanov reaction, Firtsch-Buttenberg-Wiechell. Stevens, Wittig and Favorskii, Dienone-phenol, Baker-Venkatraman rearrangement. Baeyer-Villiger oxidation. Neber Benzidine rearrangement.

SUGGESTED BOOK:

- Advanced Organic Chemistry–Reactions, Mechanism and Structure, Jerry March 7th Ed., John Wiley (2013).
- 2. Advanced Organic Chemistry, F. A. Carey and R. J. Sundberg, Plenum (1990).
- A Guide Book to Mechanism of Organic Chemistry, Peter Sykes, Longman (2000).

CHE454	Spectroscopic Methods-II
	Unit-I:
	Ultraviolet and Visible Spectroscopy
	Classification of electronic transitions, Terminology, substituent and
	solvent effects, UV spectral study of alkenes, polyenes, enones and
	aromatic compounds. Empirical rules for calculating λ_{max} .
	IR Spectroscopy
	Sampling techniques, Group frequencies, factors affecting group
	frequencies, bond order, mass effect, conjugation, inductive,
	resonance, steric effects, intramolecular interactions. application of
	IR in the study of H-bonding and tautomerism. Complementarity of
	IR and Raman. Problems using UV and IR.
	Unit-II:
	Nuclear Magnetic Resonance Spectroscopy
	Introduction, Magnetic properties of nuclei-Resonance condition,
	Nuclear spin, population of nuclear spin levels and NMR isotopes,
	relaxation methods, Instrumentation
	handling; classical approach and FT-NMR. chemical shift, factors
	influencing chemical shifts, Pascals triangle-low and high resolution,
	reference compounds Karplus Curve, diamagnetic and paramagnetic
	effects and magnetic anisotropy. equivalence of protons-chemical
	and magnetic equivalence; Spin systems: first order and second order
	coupling of AB systems, simplification of complex spectra.
	CIDNP, Nuclear Over Hauser effect (NOE), Factors influencing
	coupling constants and Relative intensities.
	¹³ C NMR Spectroscopy
	Types of CMR spectra-undecoupled, proton decoupled, Off-
	resonance decoupled (SFORD); Selectively decoupled and gated
	decoupled spectra. ¹³ C chemical shifts of aliphatic and aromatic
	compounds; Factors affecting the chemical shifts. Applications of
	¹³ C NMR spectroscopy. NMR problems

Mass Spectrometry

	Basic principles- instrumentation; Ion production: Soft ionization	
	methods: Low energy electron ejection; Chemical ionization; Fast-	
	atom bombardment (FAB), Plasma desorption (PD) and Matrix	
	Assisted Laser Desorption/ionization (MALDI); Electrospray	
	ionization (ESI); Mass spectrum: Unit mass molecular ion and	
	isotope peaks; High resolution molecular ion; recognition of the	
	molecular ion peak; Use of molecular formula; Fragmentation of	
	pattern for common organic compounds;	
	Composite problems; Use of HRMS to determine exact molecular	
	weight of compounds;	
	Application of UV, IR, NMR and mass methods in the structural	
	elucidation of organic compounds	
	SUGGESTED BOOKS:	
	1. Organic spectroscopy, W. Kemp, ELBS London, 2000.	
	2. Spectrometric identification of organic compounds, 6 th ed., R. M.	
	Silverstien, and F. X. Webster, 2004.	
	3. Mass spectroscopy a foundation course. K. Downard, RSC,	
	Cambridge, 2004.	
1		
CHE491	Laboratory Techniques in Inorganic Chemistry –I	3
CHE491	Laboratory Techniques in Inorganic Chemistry –I Qualitative and Quantitative Analysis:	3
CHE491		3
CHE491	Qualitative and Quantitative Analysis:	3
CHE491	Qualitative and Quantitative Analysis:1. Qualitative analysis of mixture of salts (soluble and insoluble)	3
CHE491	Qualitative and Quantitative Analysis: 1. Qualitative analysis of mixture of salts (soluble and insoluble) containing six radicals including one less common metal ions-Tl,	3
CHE491	 Qualitative and Quantitative Analysis: 1. Qualitative analysis of mixture of salts (soluble and insoluble) containing six radicals including one less common metal ions-Tl, Mo, W, Se, Ti, Zr, Th, Ce, V, and U. 	3
CHE491	 Qualitative and Quantitative Analysis: 1. Qualitative analysis of mixture of salts (soluble and insoluble) containing six radicals including one less common metal ions-Tl, Mo, W, Se, Ti, Zr, Th, Ce, V, and U. 2. Separation and determination of two metal ions Cu-Ni, Ni-Zn, 	3
CHE491	 Qualitative and Quantitative Analysis: 1. Qualitative analysis of mixture of salts (soluble and insoluble) containing six radicals including one less common metal ions-Tl, Mo, W, Se, Ti, Zr, Th, Ce, V, and U. 2. Separation and determination of two metal ions Cu-Ni, Ni-Zn, Cu-Fe involving volumetric and gravimetric methods. 	3

	a trong notogoium dia suchis/austata) -ture	<u> </u>
	a. trans-potassium diaquabis(oxalato)chromate(III)	
	trans-K[$Cr(ox)_2(H_2O)_2$].	
	b. vanadyl bis(acetylacetonate) [VO(acac) ₂].	
	c. sodiumdiamminetetrathiocyanatochromate(III),	
	$Na[Cr(NH_3)_2(SCN)_4].$	
	d. bis(acetate)chromate(II), [Cr(OAc) ₂].2H ₂ O.	
	e. cis-potassium diaquabis(oxalato)chromate(III)	
	$cis-K[Cr(ox)_2(H_2O)_2].$	
	f. tris(acetylacetonato)manganese(III), [Mn(acac) ₃]	
	g. potassium trioxalatoferrate(III) trihydrate	
	$K_3[Fe(C_2O_4)_3]$. $3H_2O$.	
	h. Prussian blue, Fe ₃ [Fe(CN) ₆] _{3.}	
	i. sodium hexanitritocobaltate(III), Na ₃ [Co(ONO) ₆].	
	j. Schiff base complexes of cobalt and nickel.	
	SUGGESTED BOOKS:	
	1. Advanced Practical Inorganic Chemistry, Gurdeep Raj, 23rd Ed,	
	Krishna Prakashan Media, Goel Publishing House, Agara, U.P.,	
	India, 2013.	
	2. Vogel's Qualitative Inorganic Analysis, G. Svehla, 7th Ed.,	
	Prentice Hall, 2013.	
	3. Advanced Experimental Inorganic Chemistry, Ayodhya Singh,	
	Ayushaman Publication House, 2012.	
	4. Applied Analytical Chemistry, Vermani O P., New Age	
	International Publisher, New Delhi, (2005)	
CHE492	Laboratory Techniques in Organic Chemistry -II	3
	1. Organic mixture separation	
	Separation of ternary mixtures by detection of extra elements in	
	organic compounds by non-breakable sodium ignition apparatus (NOSIA)	
	2. Multistep organic synthesis	
	2. Multistep of game synthesis	

	a) Preparation of oxidizing agent and its use	
	b) Preparation nitro compound and its derivative	
	c) Preparation of organic compounds by Mannich reaction and	
	Doebner modification of Knoevengel reaction.	
	3. Chromatographic Techniques	
	Paper, thin layer and column chromatography	
	4. Draw structures using ChemDraw	
	5. Prediction of structure using IR, NMR and Mass.	
	SUGGESTED BOOKS	
	1. Experiments and Techniques in Organic Chemiatry, D. Pasto, C.	
	Johnson and M. Miller, Prentice Hall.	
	2. Organic Experiments, K.L.Williamson, D. C. Heath.	
	Experimental Organic Chemistry, Vol I & II,	
	3. Experimental Organic Chemistry, Vol. I, P. R. Singh, D.S.	
	Gupta and K.S. Bajpai, Tata McGraw Hill.	
	M. Sc. Chemical Sciences	
	Third Semester	
CHE501	Advanced Inorganic Chemistry-III	3
CHESUI		3
	Unit I: Redex Reactions by Excited Metal Complexes	
	Redox Reactions by Excited Metal Complexes	
	Charge transfer spectra; Intra ligand and charge transfer to solvent	
	state, metal complexes as redox reactants, reducing and oxidizing	
	properties of Ru(bipy) ₃ , comparison with Fe(bipy) ₃ , role of spin-orbit	
	coupling, applications of redox processes of low energy reactants	
	into high-energy products and chemical energy into light, water	
	photolysis, metal colloids, dye sensitized solar cell.	
	Unit-II:	
	Inorganic Reactions Mechanisms	
	Metal ligand equilibrium in solution, kinetically indistinguishable schemes, rate scale, mechanistic simulation; associative, dissociative,	

 interchange, nucleophilic, electrophilic pathways; cross reactions and Marcus-Hush theory, Hammett relation. Substitution Reactions Square planar and octahedral complexes, inorganic nucleophilicity
Substitution Reactions
Square planar and octahedral complexes inorganic nucleophilicity
Square planar and octaneoutly complexes, morgane nucleophinety
scales, proton ambiguity, kinetics of chelate formation.
Redox reactions
Electron transfer reactions, mechanism of one-electron transfer
reactions, outer sphere type reactions, inner sphere type reactions.
Photochemical Reactions
Unit III:
Organometallics Reactions and Catalysis
Reactions involving gain and loss of ligands, reactions involving
modification of ligands, Metathesis reactions; σ -bond meta thesis, π -
bond metathesis and Ziegler-Natta polymerization, Commercial
Catalytic process; homogeneous, heterogenous and hybrid catalysts,
Isolobal analogy.
SUGGESTED BOOKS:
1. Topics in Current Chemistry, Ed. Vincenzo Balzani, Sebastiano
Campagna, Springer, 2007.
2. Inorganic Chemistry, Gary L. Miessler, Paul J. Fischer, Donald
A. Tarr, 5 th ed., Upper Saddle River, N. J: Pearson Education,
2014.
3. Inorganic and Organometallic Reaction Mechanisms, J. D.
Atwood, 2 nd Ed., VCH, New York, 1997.
CHE502 Applied Physical Chemistry-III 3
Unit-I:
Electronic structure of solids
Free electron theory of solids, results of free electron theory;
limitations and success of free electron theory, Fermi distribution,
Fermi sphere, volume of Fermi sphere, expression for energy levels
in a solid, density of states, expression for the number of energy

levels in a Fermi sphere.

Electrical properties of Solids

Electronic conductivity: Ohm's law, derivation of Ohm's law, Hall Effect, Band theory, Zone theory, Brillion zones, K-space, k-vector, Significance of k-vector, semiconductors, energy bands in a semiconductor, temperature dependence of conductivity in metals and semiconductors, intrinsic and extrinsic semiconductors, Insulators, Piezo and inverse Piezo electric effect. ferro, and pyroelectricity, magnetic properties

Unit-II: Crystal Defects

Point defects; Schottky, Frenkel and interstitial, line defects and plane defects. Non-stoichiometric defects.

Heat Capacity of Solids

Definition, Theories of heat capacity of solids: Dulong-petit, Einstein's theory, Debye Theory. Problems and their solution.

Superconductivity

Features of Superconductors, BCS theory, Meisner effect, Type I and Type II superconductors, Frolich diagram, Cooper pairs.

Unit-III:

Concepts in Electrochemistry

Electrochemical cell; conduction, reactions; Faradic and non-Faradic currents; reversible and irreversible cells; EMF series; standard electrode potential; Nernst equation; calculation of cell potential; effect of current; ohmic potential; polarization; decomposition potential; over voltage; concentration polarization; reference electrodes hydrogen electrode, calomel, and silver/silver chloride; metallic electrodes- electrodes of first, second and third kind; membrane electrodes- classifications and properties; principle, design; theory of ion selective electrodes; glass electrode.

Polarographic, amperometry and voltammetry.

SUGGESTED BOOKS:

F		
	1. Physical Chemistry, P. W. Atkins, Julio de Paula, ELBS, 9 th ed.,	
	2011.	
	2. Introduction to solids, L.V. Azoroff, McGraw Hill Book Co.,	
	New York, 1960.	
	3. Introduction to solids, L.V. Azoroff, McGraw Hill Book Co.,	
	New York, 1960.	
	4. Solids State Physics, N.W. Ashcroft and N. D. Mermin, Holt	
	Saunders International Ltd., New York 1976.	
	5. Analytical Chemistry; G. D. Christian, 5 th ed., John Wiley and	
	Sons, NY.	
	6. Modern Electrochemistry Vol-1 and 2 J. O. M Bockris and A. K.	
	N. Reddy, Plenum, New York 1978.	
CHE503	Photochemistry and Pericyclic Reactions-III	3
	Unit-I:	
	Radical and carbene chemistry	
	Generation and reactions of free-radicals: radical abstraction	
	reactions; nitrogen and oxygen centred cleavage; radical reactions	
	involving nitroso and oximes; hydrogen abstraction reactions; radical	
	addition reactions.	
	Carbenes; generation and reactions of diazo compounds,	
	cyclopropanation reactions.	
	Unit-II:	
	Photochemistry	
	Photochemistry of functional groups: i) Olefins: Cis-trans isomerism,	
	[2 + 2]-cycloaddition, rearrangements. Reaction of conjugated	
	olefins; di- π -methane rearrangements (including oxa- and aza- di- π -	
	methane rearrangements). ii) Ketones: excited state of C=O. Norrish	
	type-I and type-II cleavages. Paterno-Buchi reaction. α , β -	
	unsaturated ketones. [2+2] addition. Rearrangement of	
	cyclohexadienones Cycloaddition of singlet molecular oxygen	
	$\{[2+2], [4+2]-additions\}$. Oxidative coupling of aromatic	
	([2+2], [1+2] udditions). Oxidative coupling of atomatic	

compounds, photoreduction by hydrogen abstraction.	
Cope rearrangements.	
SUGGESTED BOOKS:	
1. Advanced Organic Chemistry–Reactions, Mechanism and	
Structure, Jerry March 7 th Ed., John Wiley (2013).	
2. Advanced Organic Chemistry, F. A. Carey and R. J. Sundberg,	
Plenum (1990).	
3. A Guide Book to Mechanism of Organic Chemistry, Peter Sykes,	
Longman (2000).	
Separation Techniques-III	3
Unit-I:	
Partition Chromatography	
Introduction; theory; technique of partition chromatography; Liquid-	
liquid partition chromatography; reversed phase partition	
chromatography; stationary support materials	
Paper Chromatography- introduction; principle; theory; types;	
technique; choice of solvent; two-dimensional paper	
chromatography; applications;	
Thin Layer Chromatography (TLC)	
Definition; mechanism; efficiency of thin layer plates; methodology	
(technique);	
	 Unit-III: Pericyclic reactions Molecular orbital symmetry, Woodward-Hoffmann correlation diagrams. FMO and PMO approaches (any one); Electrocyclic reactions: Cycloadditions: selectivities in Diels-Alder reactions, Hetero Diels-Alder reaction. cheletropic reactions. Sigmatropic rearrangements: including Walk, Ene, Claisen, Cope, oxy and aza-Cope rearrangements. SUGGESTED BOOKS: Advanced Organic Chemistry–Reactions, Mechanism and Structure, Jerry March 7th Ed., John Wiley (2013). Advanced Organic Chemistry, F. A. Carey and R. J. Sundberg, Plenum (1990). A Guide Book to Mechanism of Organic Chemistry, Peter Sykes, Longman (2000). Separation Techniques-III Unit-I: Partition Chromatography Introduction; theory; technique of partition chromatography; Liquid-liquid partition chromatography; reversed phase partition chromatography; stationary support materials Paper Chromatography (ILC) Definition; mechanism; efficiency of thin layer plates; methodology

		1
	Column Chromatography	
	Definition; types; principle; elution in column chromatography	
	experimental requirements; theory of development; Van Deemeter	
	equation and its modern version; qualitative and quantitative	
	analysis; applications.	
	Gel permeation chromatography	
	Gel chromatography; mechanism of gel permeation chromatography	
	(GPC); instrumentation and applications.	
	Unit III:	
	Gas Chromatography	
	Introduction; definition; instrumentation; technique; applications;	
	HPLC: Theory, principles, instrumentation, applications.	
	Hyphenated Techniques	
	Coupled techniques; GC-FTIR, GC-MS, LC-MS, MS-MS.	
	SUGGESTED BOOKS:	
	1. Analytical Chemistry; G. D. Christian, 5th Edn., John Wiley and	
	Sons, NY	
	2. Instrumental Methods of Inorganic Analysis; A. I. Vogel, ELBS	
	3. Fundamentals of Analytical Chemistry; D. A. Skoog; D. M.	
	West, F. J. Holler, 7 th Edn	
	4. Vogel's Text Book of Quantitative Chemical Analysis; J.	
	Mendham, J RC Denney, J. D. Barnes M. Thomas,	
	B. Sivasankar, B. 6 th Edn.; 2009	
	M. Sc. Chemical Sciences	
	Third Semester	
CHE541	Laboratory Techniques in Physical Chemistry -III	3
	I. Polarimetry	
	1. Kinetics of the inversion of sucrose in presence of HCl.	
	2. Determination of the concentration of a sugar solution.	
	3. Determination of the concentration of HCl.	

4.	Determination of the relative strength of acids.
II. Ref	fractometry
1.	Identification of pure organic liquids and oils.
2.	Determination of molar refractions of pure liquids.
3.	Determination of concentration of solutions (KCl-water,
	glycerol-water).
4.	Determination of molar refraction of solids.
5.	Study of complex formation between potassium iodide and
	mercuric iodide system.
III. Di	stribution law
1.	Distribution coefficient of iodine between an organic solvent and
	water.
2.	Distribution coefficient of benzoic acid between benzene and
	water.
3.	Determination of the equilibrium constant of the reaction $KI + I_{\rm 2}$
	$\leftrightarrow KI_3$
IV. Co	onductivity Measurements
1.	Verification of Onsager equation.
2.	Determination of the degree of ionization of weak electrolytes.
3.	Determination of pKa values of organic acids.
4.	Determination of solubility of sparingly soluble salts.
5.	Titration of a mixture of acids against a strong base.
6.	Titration of a dibasic acid against a strong base.
V. Pot	tentiometry
1.	Determination of single electrode potentials (Cu and Zn).
2.	Application of Henderson equation.
3.	Titration of a mixture of acids against a strong base.
4.	Determination of end point of a titration using Gran Plot.
5.	Determination of the concentration of a mixture of Cland Iions.
SUCC	GESTED BOOKS:
	Advanced Practical Physical Chemistry, J. B. Yadav, Goel
1.	Auvanceu Flacucai Fliysicai Chemisu'y, J. D. Fadav, Goel

	Publishing House, 2001.	
	2. Experiments in Physical Chemistry, G. W. Garland, J.W. Nibler,	
	D. P. Shoemaker, 8 th Edn., McGraw Hill, 2009.	
	3. Practical Physical Chemistry, B. Viswanathan, Viva Pub., 2005.	
CHE542	Laboratory Techniques in Inorganic Chemistry -III	3
	I. Estimation and Separation (Any five):	
	1. Estimation of nitrogen by Kjeldahl's method.	
	2. Estimation of sulphur/halogen by fusion method.	
	3. Separation of Cu, Co, and Zn on paper strips.	
	4. Separation of Cu and Ni on cellulose column.	
	5. Separation and determination of Zn and Cd using Ion	
	exchanger.	
	6. Separation and determination of Co and Ni using Ion	
	exchanger.	
	7. Separation and determination of chloride and bromide using	
	Ion exchanger.	
	8. Evparation and determination of chloride and iodide using Ion	
	exchanger.	
	9. Separation and spectrophotometric determination of Cu, Fe,	
	and Ni using Ion Exchanger.	
	10. Separation and determination of Cl^- and I^- (aqueous-acetone	
	medium).	
	II. Solvent Extraction (Any five):	
	1. Determination of Fe(III) by chloride extraction in ether.	
	2. Determination of Fe(III) as the 8-hydroxy quinolate (oxinate) by	
	extraction in chloroform.	
	3. Quantitative analysis of tri-component mixture of metal ions by	
	gravimetrically, volumetrically and spectrophotometrically.	
	a. Mixed solution of Cu^{2+} - Ni^{2+} - Zn^{2+}	
	b. Mixed solution of Cu^{2+} - Ni^{2+} - Fe^{3+}	
	4. Spectrophotometric determination:	
	a. Manganese / Chromium / Vanadium in steel sample.	

	b. Iron-phenanthroline complex: Job's method of	
	continuous variation.	
	c. Zirconium-Alizarin red complex: slope ratio method.	
	d. Phosphate, nitrate, fluoride and sulphate	
	 Analysis of dolomite. 	
	 Analysis of brass. 	
	 7. Colorimetric determination of chromium (VI) (in ppm) using 1,5 	
	diphenyl carbazide as a reagent for color development.	
	Suggested Books:	
	1. Experiments in Inorganic Chemistry, Satya Prakash	
	Mohanty, Sushil Chauhan, Campus Books International (2010).	
	2. Text Book of Quantitative Chemical Analysis, Bassett et al, 5th	
	Edition, ELBS, Longmann, U.K., 1989.	
	3. Vogel's Quantitative Chemical Analysis, J. Mendham, R.C.	
	Denney, J.D. Barnes, M.J.K. Thomas, 6th Edn, 2009.	
	4. Advanced Practical Inorganic Chemistry, G. Raj, 23rd Edition,	
	Krishna Prakashan Media, Goel Publishing House, Agra, U.P.,	
	India, 2013.	
	M. Sc. Chemical Sciences	
	Fourth Semester	
CHE551	Advanced Inorganic and Nanochemistry	3
	/ Inorganic Spectral Techniques Elective-IV	
	Advanced Inorganic and Nanochemistry	
	Unit I:	
	Principles and concepts of Green Chemistry	
	Introduction, definition, principles, atom economy, atom economic	
	and atom uneconomic reaction, reducing toxicity, waste	
	minimization techniques, on-site waste treatment, design for	
	degradation, polymer recycling.	
	Catalysis and Green Chemistry	
	Introduction to catalysis, heterogeneous catalysis-basics, zeolites,	
	sulfonated resins, clays, oxidation, catalytic converters;	

homogeneous catalysis-transition metal catalysis, asymmetric catalysis; phase transfer catalysis, biocatalysis, photocatalysis.

Unit II:

Nanochemistry

Introduction to nanomaterials, role of size in nanomaterials, nanoparticles, stability of nanoparticles, structures and classification of nanomaterials, properties of materials & nanomaterials.

Fabrication of Nanomaterials

Chemical, physical and biological methods.

Nanocomposites

Introduction, types of nanocomposite, core-shell structured nanocomposites.

Unit III:

Supramolecular Chemistry

Molecular recognition, molecular receptors for different types of molecules including arisonic substrates, design, and synthesis of coreceptor molecules and multiple recognition, supramolecular reactivity and catalysis, transport processes and carrier design, supramolecular devices: electronic, ionic and switching devices, supramolecular photochemistry, some example of self-assembly in supramolecular chemistry.

Books Suggested:

- Green Chemistry: Frontiers in Benign Chemical Synthesis and Processes, Edited by Paul T. Anastas & Tracy C. Williamson, Oxford University Press, 1998.
- Introduction to Nanoscience and Nanotechnology, Gabor L. Hornyak, H.F. Tibbals, Joydeep Dutta, John J. Moore, CRC Press, 2008.

3. Supramolecular Chemistry, J.M. Lehn, VCH, 2006.

Inorganic Spectral Techniques

Unit I:

Nuclear Magnetic Resonance (NMR) spectroscopy

Signal intensities and spin-spin coupling to structure determination of inorganic compounds carrying NMR active nuclei like ¹¹B, ¹⁵N, ¹⁹F, ²⁹Bi, ³¹P, coupling to quadrupolar nuclei, NMR of paramagnetic substances in solution.

Unit II:

Mossbauer Spectroscopy

Doppler shift and recoil energy, isomer shift and its interpretation, quadrupole interactions, effect of magnetic field on Mossbauer spectra, applications to metal complexes, metal carbonyls, Fe-S clusters and tin compounds.

Vibrational Spectroscopy

Applications of vibrational spectroscopy in investigating the stretching and bending modes of molecules (AB₃ and AB₄ types).

Unit III:

Electronic Paramagnetic Resonance (EPR) spectroscopy

Electronic Zeeman effect and EPR transition energy, EPR spectrometers, presentation of spectra. effects of electron Zeeman, Hyperfine splitting in isotropic systems, spin polarization mechanism and McConnell's relations Anisotropy in g-value, EPR of triplet states, zero field splitting, Kramer's rule, survey of EPR spectra of first-row transition metal ion complexes.

Nuclear Quadrupolar Resonance (NQR) spectroscopy: Quadrupolar moment, energy levels of a quadrupolar nuclease and effect of asymmetry parameters and energy levels, Effect of an external magnetic field, selected examples for elucidation of structural aspects of inorganic compounds using NQR spectroscopy.

Books Suggested:

	1. Ebsworth, E. A. O. Structural Methods in Inorganic Chemistry	
	Blackwell Scientific Publications, 1991.	
	2. Physical Methods in Inorganic Chemistry Drago, PB, R. S,	
	Affiliated East-West Press Pvt. LtdNew Delhi, 2012.	
	3. NMR, NQR, EPR and Mossbauer Spectroscopy in Inorganic	
	Chemistry, R. V. Parish, Ellis Hardwood, 1991.	
	4. Structural Methods in Molecular Inorganic Chemistry, D. W. H.	
	Rankin, Norbert Mitzel, Carole Morrison, Wiley, 2013.	
CHE552	Polymer Chemistry/Molecular Bio-physical Chemistry	3
	Elective-IV	
	Polymer Chemistry	
	Unit 1:	
	Classification of polymers, polymerization reactions and kinetics,	
	Molar mass determinations, molecular Forces and chemical Bonding	
	in polymers, solubility of polymers, thermal stability, theta solvents.	
	Glass Transition Temperature, Polymer Degradation, Polymer	
	Reactions, Thermodynamics and friccohesity of metallic and silicon	
	polymers.	
	Unit 2:	
	Copolymerization: Basic, Types of co-polymerizations, Kinetics of	
	free Radical Copolymerization, Binary copolymerization equation,	
	Composition of copolymers,	
	Step polymerization: Mechanism of step polymerization,	
	polyfunctional step polymerization. Crystallinity in polymer: Degree	
	of crystallinity, Determination of Crystallinity, Morphology of	
	Crystalline Polymer.	
	Unit 3:	
	Polymer Synthesis: bulk polymerization, precipitation, Emulsion	
	polymerization, Suspension polymerization, Interfacial	
	polymerization, Methods for determination of average molecular	
	weight of polymer: (colligative property measurement, Light	
	Scattering method, Dilute solution viscometry survismetry, Ultra	

Centrifugation, Weight Distribution Methods. Rheology of polymer:
Structural stress and strain, survismetrically studies of silicon
polymers, Rheological and interfacial properties of silicone oil
emulsions
Books Suggested:
1. Survismeter: Science vision and invention by Man Sing, New
Delhi 2013.
 Introduction to polymer chemistry C. E. Carraher New York CRC Press 2010.
3. Polymer chemistry by P. C Hiemenz New York CRC Press 2007.
Molecular Bio-physical Chemistry
Unit I:
Molecular Bio-physical Chemistry
Electrophoresis- principles of free electrophoresis, zone
electrophoresis, gel electrophoresis and its applications in qualitative
and quantitative study of proteins.
Determination of isoelectric point of a protein. Electroosmosis and
streaming potential and its biological significance.
Diffusion of solutes across bio membranes and its application in the
mechanism of respiratory exchange. "Salting In" and "Salting Out"
of proteins.
Unit II:
Osmotic behaviour of cells and osmoregulation and its application in
the evolution of excretory systems of organisms. Effect of
temperature and pH on the viscosity of biomolecules (albumin
solution). Effect of temperature, solute concentration (amino acids)
on surface tension.
Biological significance of surface tension
Application of sedimentation velocity and sedimentation equilibrium
method for molecular weight determination of proteins. Surface

	energy and friccohesity of particles in process of coagulation.	
	energy and meconesity of particles in process of coaguration.	
	Unit III:	
	Macromolecules	
	Polypeptides, helix random coil transition in polypeptides.	
	Structure of proteins, Ramachandran plot, protein folding, protein	
	denaturation, Hierarchy of protein structure, experimental methods	
	to determine protein structure.	
	Structure of nucleic acids	
	Watson Crick model, supercoiled DNA, denaturation and	
	renaturation of DNA, polymerase chain reactions.	
	Books Suggested:	
	1. Introduction to Physical Organic Chemistry, R.D. Gilliom,	
	Madison – Wesley, USA (1970).	
	2. Physical Organic Chemistry, Reaction Rate and Equilibrium	
	Mechanism – L.P. Hammett, McGraw HillBook, Co., (1970).	
	3. Biophysical Chemistry, Principle and Technique – A. Upadhyay,	
	K. Upadhyay and N. Nath, Himalaya Publishing House,	
	Bombay, (1998).	
CHE553	Advanced Organic Chemistry/ Organic Synthesis /Elective-IV	
	Advanced Organic Chemistry	
	Unit-I:	
	Optical activity in the absence of chiral atoms:	
	Chirality in biphenyls, adamentanes, ansa compounds, cyclophanes,	
	trans-cyclooctene, catenanes, rotaxanes and helicenes. Chirality of	
	organic compounds due to the presence of silicon, nitrogen,	
	phosphorous, arsenic and sulphur atoms.	
	Functional group protection; protection of NH groups, OH groups,	
	Diols, Carbonyl groups, carboxyl group, double and triple bonds.	
	Unit-II:	
	Retrosynthetic Analysis	
	Reversal of the carbonyl group polarity, steps in planning synthesis,	
	construction of the carbon skeleton, functional group	

in	terconversion, linear and convergent synthesis, Synthesis of
	turated heterocycles and 3-, 4-, 5- and 6-membered rings.
	In thesis of some complex molecules using disconnection approach.
Unit	
	ormation of C-C single bonds using organometallic reagents
	rganolithium reagents, Organo magnesium reagents,
	rganolithium reagents, Organocerium reagents, organocopper
	agents, organochromium reagents, organozinc reagents,
	ganoboron reagents, organosilicon reagents, palladium catalysed
	pupling reactions.
00	uping reactions.
SUG	GESTED BOOKS
	Stereochemistry of carbon compounds, E. L. Eliel, S. H. Wilen
1.	and L. N. Mander, John Wiley & Sons, 1994.
2	Some modern methods of Organic Synthesis, W. Caruthers,
2.	Cambridge Uni. Press London, 2nd Edn., 1998.
3	Stereochemistry of organic compounds- Principle and
5.	applications, D. Nasipuri, 2nd Edn., New Age International
	Publishers, 2001.
4.	Designing organic synthesis: A disconnection approach, S.
	Warren, John Wiley & Sons, New York, 2nd Edn. 1987.
5	Advanced organic chemistry Part B, F. A. Carrey and J.
0.	Sundberg, Plenum Press, 1999.
	Sandeerg, Frendmit Fredd, 19991
	Organic Synthesis
Unit-	
Ο	xidation
	xidation of alcohols to aldehydes and ketones, reagents for alcohol
	tidation, chemo selective agents for oxidising alcohols, oxidation
	tertiary allylic alcohols, oxidation carboxylic acids, oxidation of
te	rminal alkynes, allylic oxidation of alkenes.

Unit-II:

Reduction

Reduction of carbonyl compounds, nucleophilic reducing agents, electrophilic reducing agents, regio and chemoselective reductions, diastereoselective reduction of cyclic ketones, diastereofacial selectivity in reduction, enantioselective reductions.

Unit III:

Hydrogenation of carbon -carbon double bonds; dissolving metal reductions, hydroboration, organoboranes and asymmetric synthesis of alcohols from alkenes, oxymercuration- demercuration, epoxidation of alkenes, epoxides from halohydrins, preparation of epoxides from ketones, epoxidation of allylic alcohols, dihydroxylation of alkenes, halolactonisation.

Reduction of carbon -carbon triple bonds; semi reduction of alkyne (Lindlar type catalyst), hydroboration of alkynes and enynes, preparation of trans-alkenes from alkynes, reduction of propargylic alcohols.

SUGGESTED BOOKS

- Modern synthetic reactions, H. O. House, W. A. Benjamin, California, 2nd ed. 1972.
- Some modern methods of organic synthesis, W. Carruthurs, Cambridge Univ. Press, London, 2nd ed. 1978.
- Advanced organic chemistry Part B, F. A. Carrey and J. Sundberg, Plenum Press, 1999.

CHE554	Advanced Analytical Methods/ Medicinal Chemistry Elective-IV	3
	Advanced Analytical Methods	
	Unit -I:	
	NMR Spectroscopy	
	CW and PFT techniques- types of C-NMR spectra- Homonuclear	

(13	C ¹³ CJ) and heteronuclear ($^{13}C^{-1}H$, $^{13}C^{-2}HJ$) couplings.	
Unit -	П:	
20	- NMR	
Co	orrelation spectroscopy (COSY) - HOMOCOSY, HETERO -	
CO	DSY, INADEQUATE NOESY. HSQC, HMBC and TOCSY.	
Aţ	oplications	
Unit -	III:	
Μ	ass spectrometry	
pri	nciple, instrumentation, ionization methods-EI, CI, FAB, arc and	
spa	ark, photo ionization; thermal ionization; FI and FD, ESI, APCI,	
las	er induced, photoelectric ionization, SIMS, mass analyzers-	
ma	agnetic, double focusing, time of flight; single and triple	
qu	adrupolar, ion trap, ion cyclotron resonance analyzer, MALDI.	
SUG(GESTED BOOKS	
1.	Mass Spectrometry: A Textbook Gross, Jürgen H. 2nd ed.,	
	Springer, 2011.	
2.	Mass Spectrometry: Principles and Applications Edmond De	
	Hoffmann, Vincent	
	Stroobant J. Wiley, 20-Nov-2007.	
3.	Electrospray and MALDI Mass Spectrometry: Fundamentals,	
	Instrumentations, Practicalities	
	and Biological Applications Ed. Richard B. Cole J. Wiley 2010	
4.	Spectroscopic Identification of Organic Compounds; R.M.	
	Silverstein and Webster	
5.	NMR in Chemistry – A Multinuclear Introduction; William	
	Kemp	
6.	Understanding NMR Spectroscopy, Second Edition by James	
	Keeler.	
	Medicinal Chemistry	
Unit I		

Pharmacokinetics, Pharmacodynamics, Theories of drug
activity& Drug design
Basics of drug receptor interactions. Theories of drug activity.
Hansch equation. Computer-aided drug design and molecular
modeling.
Antibiotics
Structure elucidation and synthesis of streptomycin, penicillins,
cephalosporin-C, chloromycetin and tetracyclins (terramycin and
aureomycin).
Antidiabetics
Sequence of A- & B- chains of insulin, glibenclamide, metformin,
ciglitazone.
Antihistamines
Methapyrilene, chlorpheniramine.
Antivirals
Acyclovir, amantidine, rimantidine and zidovudine.
Unit II:
Antineoplastic agents: Introduction, cancer chemotherapy, special
problems, role of alkylating
agents and antimetabolites in treatment of cancer. Mention of
carcinolytic antibiotics and mitotic
inhibitors. Synthesis of mechlorethamine, cyclophosphamide,
melaphan, uracil mustards and mercaptopurine. Recent development
in cancer chemotherapy. Hormone and natural products.
Unit III:
Cardiovascular drugs
Introduction, cardiovascular diseases, drug inhibitors of peripheral
sympathetic function, central intervention of cardiovascular output.
Direct acting arteriolar dilators. Synthesis of amyl nitrite, sorbitrate,
diltiazem, quinidine, verapamil, methyldopa,
atenolol, oxyprenol.
Local anti-infective agents

Introduction and general mode of action. Synthesis	of
sulphonamides, furazolidone, nalidixic acid, ciprofloxacin, dapsor	ne,
aminosalicyclic acid, isoniazide, ethionamide, ethambut	al,
fluconazole, econozole, griseofulvin, chloroquin and primaquin.	
SUGGESTED BOOKS	
1. Burger's Medicinal Chemistry and Drug Discovery, Vols. 1	-6
Ed. D.J. Abraham, John Wiley, 2003	
2. An Introduction to Medicinal Chemistry, P Graham, III E	d.,
Oxford, 2006	
3. Medicinal Chemistry, N Weaver, Oxford, 2006	
4. Goodman and Gilman's Pharmacological Basis of Therapeutic	cs,
11th Edn., Tata McGraw-Hill, 2005.	
5. The Organic Chemistry of Drug Design and Drug Action, R	В
Silverman, II Edn, Academic Press, Amsterdam, 2004.	
6. Wilson and Gisvold's Text Book of Organic Medicinal a	nd
Pharmaceutical chemistry, J H Block and J M Beale, Jr., Ed	s.,
Lippincott, Williams and Wilkins, 2003.	
CHE591 Project	6
TOTAL CREDITS	72